Show simple item record

dc.contributor.authorAndrica, Dorin
dc.contributor.authorBagdasar, Ovidiu
dc.date.accessioned2021-05-28T10:46:05Z
dc.date.available2021-05-28T10:46:05Z
dc.date.issued2021-04-12
dc.identifier.citationAndrica, D. and Bagdasar, O., (2021). 'On Generalized Lucas Pseudoprimality of Level k.' Mathematics, 9(8), pp. 1-17.en_US
dc.identifier.doi10.3390/math9080838
dc.identifier.urihttp://hdl.handle.net/10545/625796
dc.description.abstractWe investigate the Fibonacci pseudoprimes of level k, and we disprove a statement concerning the relationship between the sets of different levels, and also discuss a counterpart of this result for the Lucas pseudoprimes of level k. We then use some recent arithmetic properties of the generalized Lucas, and generalized Pell–Lucas sequences, to define some new types of pseudoprimes of levels k+ and k− and parameter a. For these novel pseudoprime sequences we investigate some basic properties and calculate numerous associated integer sequences which we have added to the Online Encyclopedia of Integer Sequences.en_US
dc.description.sponsorshipN/Aen_US
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.urlhttps://www.mdpi.com/2227-7390/9/8/838en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNumber theoryen_US
dc.subjectNumerical simulationsen_US
dc.titleOn Generalized Lucas Pseudoprimality of Level ken_US
dc.typeArticleen_US
dc.identifier.eissn2227-7390
dc.contributor.departmentBabeş-Bolyai University, 400084 Cluj-Napoca, Romaniaen_US
dc.contributor.departmentUniversity of Derbyen_US
dc.identifier.journalMathematicsen_US
dc.identifier.piimath9080838
dc.source.journaltitleMathematics
dc.source.volume9
dc.source.issue8
dc.source.beginpage838
dcterms.dateAccepted2021-04-07
refterms.dateFOA2021-05-28T10:46:06Z
dc.author.detail782275en_US


Files in this item

Thumbnail
Name:
(2021) Mathematics-09-00838 - ...
Size:
320.7Kb
Format:
PDF
Description:
Published article - open access

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/