Show simple item record

dc.contributor.authorDianavinnarasi, J.
dc.contributor.authorRaja, R.
dc.contributor.authorAlzabut, J.
dc.contributor.authorCao, J.
dc.contributor.authorNiezabitowski, M.
dc.contributor.authorBagdasar, O.
dc.date.accessioned2021-04-07T12:47:41Z
dc.date.available2021-04-07T12:47:41Z
dc.date.issued2021-02-11
dc.identifier.citationDianavinnarasi, J., Raja, R., Alzabut, J., Cao, J., Niezabitowski, M. and Bagdasar, O., (2021). ' Application of caputo–fabrizio operator to suppress the aedes aegypti mosquitoes via wolbachia: an LMI approach'. Mathematics and Computers in Simulation, pp. 1-24.en_US
dc.identifier.issn0378-4754
dc.identifier.doi10.1016/j.matcom.2021.02.002
dc.identifier.urihttp://hdl.handle.net/10545/625693
dc.description.abstractThe aim of this paper is to establish the stability results based on the approach of Linear Matrix Inequality (LMI) for the addressed mathematical model using Caputo–Fabrizio operator (CF operator). Firstly, we extend some existing results of Caputo fractional derivative in the literature to a new fractional order operator without using singular kernel which was introduced by Caputo and Fabrizio. Secondly, we have created a mathematical model to increase Cytoplasmic Incompatibility (CI) in Aedes Aegypti mosquitoes by releasing Wolbachia infected mosquitoes. By this, we can suppress the population density of A.Aegypti mosquitoes and can control most common mosquito-borne diseases such as Dengue, Zika fever, Chikungunya, Yellow fever and so on. Our main aim in this paper is to examine the behaviours of Caputo–Fabrizio operator over the logistic growth equation of a population system then, prove the existence and uniqueness of the solution for the considered mathematical model using CF operator. Also, we check the alpha-exponential stability results for the system via linear matrix inequality technique. Finally a numerical example is provided to check the behaviour of the CF operator on the population system by incorporating the real world data available in the known literature.en_US
dc.description.sponsorshipThe article has been written with the joint partial financial support of SERB-EEQ/2019/000365, RUSA-Phase 2.0 grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No. F.510/8/DRS-I/2016(SAP-I) and DST (FIST-Phase I) vide letter No. SR/FIST/MS-I/2018-17, DST-PURSE 2nd Phase programme vide letter No. SR/ PURSE Phase 2/38 (G), the National Science Centre in Poland Grant DEC-2017/25/B/ST7/02888 and J. Alzabut would like to thank Prince Sultan University for supporting this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.en_US
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0378475421000410en_US
dc.rights.urihttps://www.elsevier.com/tdm/userlicense/1.0/
dc.subjectTheoretical Computer Scienceen_US
dc.subjectModelling and Simulationen_US
dc.subjectGeneral Computer Scienceen_US
dc.subjectApplied Mathematicsen_US
dc.subjectNumerical Analysisen_US
dc.titleApplication of caputo–fabrizio operator to suppress the aedes aegypti mosquitoes via wolbachia: an LMI approachen_US
dc.typeArticleen_US
dc.contributor.departmentAlagappa University, Karaikudi, Indiaen_US
dc.contributor.departmentPrince Sultan University, Riyadh 12435, Saudi Arabiaen_US
dc.contributor.departmentSoutheast University, Nanjing, Chinaen_US
dc.contributor.departmentYonsei University, Seoul, South Koreaen_US
dc.contributor.departmentSilesian University of Technology, Akademicka, Gliwice, Polanden_US
dc.contributor.departmentUniversity of Derbyen_US
dc.identifier.journalMathematics and Computers in Simulationen_US
dc.identifier.piiS0378475421000410
dc.source.journaltitleMathematics and Computers in Simulation
dcterms.dateAccepted2021-02-01
dc.author.detail782275en_US


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
(2021) MATCOM - Caputo-Fabrizio ...
Embargo:
2022-02-11
Size:
907.4Kb
Format:
PDF
Description:
Main Article

This item appears in the following Collection(s)

Show simple item record