Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks
dc.contributor.author | Saleem, Rabia | |
dc.contributor.author | Yuan, Bo | |
dc.contributor.author | Kurugollu, Fatih | |
dc.contributor.author | Anjum, Ashiq | |
dc.date.accessioned | 2021-02-08T15:50:56Z | |
dc.date.available | 2021-02-08T15:50:56Z | |
dc.date.issued | 2020-12-30 | |
dc.identifier.citation | Saleem, R., Yuan, B., Kurugollu, F. and Anjum, A. (2020). 'Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks'. IEEE/ACM 13th International Conference on Utility and Cloud Computing, Leicester, 7-10 December. New York: IEEE, pp. 446-448. | en_US |
dc.identifier.isbn | 9780738123943 | |
dc.identifier.doi | 10.1109/ucc48980.2020.00070 | |
dc.identifier.uri | http://hdl.handle.net/10545/625606 | |
dc.description.abstract | Artificial Intelligence (AI) models can learn from data and make decisions without any human intervention. However, the deployment of such models is challenging and risky because we do not know how the internal decisionmaking is happening in these models. Especially, the high-risk decisions such as medical diagnosis or automated navigation demand explainability and verification of the decision making process in AI algorithms. This research paper aims to explain Artificial Intelligence (AI) models by discretizing the black-box process model of deep neural networks using partial differential equations. The PDEs based deterministic models would minimize the time and computational cost of the decision-making process and reduce the chances of uncertainty that make the prediction more trustworthy. | en_US |
dc.description.sponsorship | N/A | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.url | https://ieeexplore.ieee.org/abstract/document/9302808 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source | 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC) | |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Deep Neural Networks | en_US |
dc.subject | Partial differential equations | en_US |
dc.subject | Discretization | en_US |
dc.title | Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks | en_US |
dc.type | Meetings and Proceedings | en_US |
dc.contributor.department | University of Derby | en_US |
dc.contributor.department | University of Leicester | en_US |
dc.identifier.journal | 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC) | en_US |
dcterms.dateAccepted | 2020-10-30 | |
dc.author.detail | STF1867 | en_US |