Show simple item record

dc.contributor.authorAndrica, Dorin
dc.contributor.authorBagdasar, Ovidiu
dc.contributor.authorŢurcaş, George Cătălin
dc.date.accessioned2021-01-05T11:06:01Z
dc.date.available2021-01-05T11:06:01Z
dc.date.issued2020-11-22
dc.identifier.citationAndrica D., Bagdasar O., and Ţurcaş G.C. (2020). ‘The number of partitions of a set and Superelliptic Diophantine equations’. In Raigorodskii A.M., and Rassias M.T. (Eds.). ‘Discrete Mathematics and Applications’. Switzerland: Springer, pp. 1-20.en_US
dc.identifier.isbn9783030558567
dc.identifier.issn1931-6828
dc.identifier.doi10.1007/978-3-030-55857-4_3
dc.identifier.urihttp://hdl.handle.net/10545/625498
dc.description.abstractIn this chapter we start by presenting some key results concerning the number of ordered k-partitions of multisets with equal sums. For these we give generating functions, recurrences and numerical examples. The coefficients arising from these formulae are then linked to certain elliptic and superelliptic Diophantine equations, which are investigated using some methods from Algebraic Geometry and Number Theory, as well as specialized software tools and algorithms. In this process we are able to solve some recent open problems concerning the number of solutions for certain Diophantine equations and to formulate new conjectures.en_US
dc.description.sponsorshipN/Aen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/chapter/10.1007/978-3-030-55857-4_3en_US
dc.rights.urihttp://www.springer.com/tdm
dc.subjectMultiseten_US
dc.subjectPartitions of a multiseten_US
dc.subjectElliptic curvesen_US
dc.subjectHyperelliptic curvesen_US
dc.titleThe number of partitions of a set and Superelliptic Diophantine equationsen_US
dc.typeBook chapteren_US
dc.identifier.eissn1931-6836
dc.contributor.department“Babeş-Bolyai” University, Cluj-Napoca, Romaniaen_US
dc.contributor.departmentUniversity of Derbyen_US
dc.contributor.departmentThe Institute of Mathematics of the Romanian Academy “Simion Stoilow” Bucharest, Romaniaen_US
dc.source.booktitleSpringer Optimization and Its Applications
dc.source.booktitleDiscrete Mathematics and Applications
dc.source.beginpage35
dc.source.endpage55
dcterms.dateAccepted2020-07
dc.author.detail782275en_US


Files in this item

Thumbnail
Name:
AndricaBagdasarTurcas - Springer ...
Embargo:
2022-11-22
Size:
230.1Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record