• Login
    View Item 
    •   Home
    • E Theses
    • Life & Natural Sciences
    • View Item
    •   Home
    • E Theses
    • Life & Natural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UDORACommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About and further information

    AboutOpen Access WebpagesOpen Access PolicyTake Down Policy University Privacy NoticeUniversity NewsTools for ResearchersLibraryUDo

    Statistics

    Display statistics

    Alternative methods for assessing habitat quality in freshwater systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Q Mauvisseau PhD Thesis final ...
    Size:
    3.057Mb
    Format:
    PDF
    Download
    Authors
    Mauvisseau, Quentin
    Advisors
    Sweet, Michael
    Ramsey, Andrew
    Brys, Rein
    Issue Date
    2020-06-03
    
    Metadata
    Show full item record
    Abstract
    “Water, water, everywhere…”. 71% of the earth’s surface is covered by water, freshwater representing 2.5% of it, and only 1% being accessible. Due, largely to a number of anthropogenic activities (pollution, habitats modification) coupled with the impacts of climate change, a dramatic decline in biodiversity is occurring across all earth’s ecosystems. Surprisingly, freshwater ecosystems receive considerably less attention than many other habitats and therefore, effective biodiversity monitoring programs are urgently needed to assess the health and state of the endangered and threatened species in these aquatic systems. Further, current techniques utilised to survey freshwater ecosystems are often considered ineffective, invasive, time consuming and biased. As a result, the implementation of molecular-based detection tools are attractive options as they are often shown to be more sensitive and cost effective. The use of environmental DNA (eDNA) detection is one such molecular tool which is showing promising results, due to its high reliability, sensitivity and non-invasiveness characters. However, recent studies have highlighted potential limitations associated with eDNA-based detection. Such limitations may lead to a decrease in the confidence of this method. The aim of this thesis was to investigate the use of eDNA-based detection across a number of species and a number of systems, all as a proxy of habitat quality. Stringent laboratory practices and validation guidelines were adhered to, allowing for reliable quality assessments of newly designed eDNA assays outlined in this thesis. Moreover, distinct controlled mesocosm experiments allowed the investigation of critical factors, part of the sampling method or analysis processes leading to an optimisation of eDNA collection and decreasing the rates of false negative results. Several comparison between traditional monitoring techniques and the novel assays were also performed aiding in the confidence of these new methods. Interestingly, the results obtained in this thesis shows a similar efficiency between traditional and eDNA-based methods for monitoring invasive species, but a higher efficiency of eDNA detection when detecting rare or low abundant organisms (i.e. those that are endangered or threatened). Furthermore, this thesis reports an extreme example where a species was found at a number of locations within a stretch of a river, yet undetected with the eDNA assay. In this chapter eDNA detection was only possible when I utilised ddPCR rather than qPCR (the more standard technique for assessing eDNA in any given system). Overall, eDNA detection was found to be an effective tool for assessing the presence of invasive and/or endangered species, increasing theknowledge on their distribution and the impact of future management plans. In this thesis, chapters 2, 3, 4, 5 and 6 are organised as case studies, aiming to highlight benefits and limitations of species-specific detection using eDNA.
    Citation
    Mauvisseau, Q 2020, 'Alternative methods for assessing habitat quality in freshwater systems', PhD thesis, University of Derby, Derby
    Publisher
    University of Derby
    URI
    http://hdl.handle.net/10545/625067
    Type
    Thesis or dissertation
    Language
    en
    Collections
    Life & Natural Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.