Show simple item record

dc.contributor.authorUchenna, Diala
dc.contributor.authorSimon, Pope
dc.contributor.authorLang, Zi-Qiang
dc.date.accessioned2020-04-07T15:26:59Z
dc.date.available2020-04-07T15:26:59Z
dc.date.issued2017-08-24
dc.identifier.citationUchenna, D., Simon, P. and Lang, Z.Q., 2017, July. Analysis and design of a nonlinear vibration-based energy harvester-a frequency based approach'. IEEE International Conference on Advanced Intelligent Mechatronics, Munich, Germany, 3-7 July. New York: IEEE, pp. 1550-1555.en_US
dc.identifier.issn9781509059980
dc.identifier.issn9781509060009
dc.identifier.doi10.1109/aim.2017.8014239
dc.identifier.urihttp://hdl.handle.net/10545/624681
dc.description.abstractThe benefits of nonlinear damping in increasing the amount of energy (power) harvested by a vibration-based energy harvester (VEH) has been reported where it was revealed that more energy can be harvested using nonlinear cubic damping when compared to a VEH with linear damping. As has been reported, this only occurs when the base excitation on the VEH, at resonance, is less than the maximum base excitation. A maximum harvester base excitation results in a maximum distance the harvester mass can move due to its size and geometric limitations. The present study is concerned with the analysis and design of a VEH using a nonlinear frequency analysis method. This method employs the concept of the output frequency response function (OFRF) to derive an explicit polynomial relationship between the harvested energy (power) and the parameter of the energy harvester of interest, i.e. the nonlinear cubic damping coefficient. Based on the OFRF, a nonlinear damping coefficient can be designed to achieve a range of desired levels of energy harvesting. It is also shown that using the OFRF the harvester throw (the displacement of the mass of the harvester), can be predicted using the designed damping coefficient.en_US
dc.description.sponsorshipN/Aen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urlhttps://ieeexplore.ieee.org/abstract/document/8014239/keywords#keywordsen_US
dc.source2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
dc.subjectDamping , Resonant frequency , Frequency response , Shock absorbers , Analytical models , Vibrations , Tuningen_US
dc.titleAnalysis and design of a nonlinear vibration-based energy harvester - a frequency based approachen_US
dc.typeMeetings and Proceedingsen_US
dc.contributor.departmentUniversity of Sheffielden_US
dc.identifier.journalIEEE International Conference on Advanced Intelligent Mechatronics (AIM)en_US
dcterms.dateAccepted2017
dc.author.detail787046en_US


This item appears in the following Collection(s)

Show simple item record