Show simple item record

dc.contributor.authorOkie, J.
dc.contributor.authorSmith, V.
dc.contributor.authorMartin-Cereceda, M
dc.date.accessioned2020-03-06T14:40:25Z
dc.date.available2020-03-06T14:40:25Z
dc.date.issued2016-05-25
dc.identifier.citationOkie, J.G., Smith, V.H. and Martin-Cereceda, M., (2016).' Major evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplasts'. Proceedings of the Royal Society B: Biological Sciences, 283(1831), pp. 1-8.en_US
dc.identifier.issn0962-8452
dc.identifier.doi10.1098/rspb.2016.0611.
dc.identifier.urihttp://hdl.handle.net/10545/624572
dc.description.abstractWe investigate the effects of trophic lifestyle and two types of major evolutionary transitions in individuality—the endosymbiotic acquisition of organelles and development of multicellularity—on organellar and cellular metabolism and allometry. We develop a quantitative framework linking the size and metabolic scaling of eukaryotic cells to the abundance, size and metabolic scaling of mitochondria and chloroplasts and analyse a newly compiled, unprecedented database representing unicellular and multicellular cells covering diverse phyla and tissues. Irrespective of cellularity, numbers and total volumes of mitochondria scale linearly with cell volume, whereas chloroplasts scale sublinearly and sizes of both organelles remain largely invariant with cell size. Our framework allows us to estimate the metabolic scaling exponents of organelles and cells. Photoautotrophic cells and organelles exhibit photosynthetic scaling exponents always less than one, whereas chemoheterotrophic cells and organelles have steeper respiratory scaling exponents close to one. Multicellularity has no discernible effect on the metabolic scaling of organelles and cells. In contrast, trophic lifestyle has a profound and uniform effect, and our results suggest that endosymbiosis fundamentally altered the metabolic scaling of free-living bacterial ancestors of mitochondria and chloroplasts, from steep ancestral scaling to a shallower scaling in their endosymbiotic descendants.en_US
dc.description.sponsorshipN/Aen_US
dc.language.isoenen_US
dc.publisherThe Royal Society Publishingen_US
dc.relation.urlhttps://eprints.ucm.es/42334/en_US
dc.relation.urlhttps://asu.pure.elsevier.com/en/publications/major-evolutionary-transitions-of-life-metabolic-scaling-and-the-en_US
dc.relation.urlhttps://royalsocietypublishing.org/doi/full/10.1098/rspb.2016.0611en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcell allometry, endosymbiosis, organelle size, metabolic theory of ecology, multicellularity, Kleiber’s lawen_US
dc.titleMajor evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplasts.en_US
dc.typeArticleen_US
dc.identifier.eissn1471-2954
dc.contributor.departmentUniversity of Kansas, USAen_US
dc.contributor.departmentUniversity of Madrid, Spainen_US
dc.contributor.departmentArizona State University, Tempe, AZ, USAen_US
dc.identifier.journalProceedings of the Royal Society Seriesen_US
dcterms.dateAccepted2016-04-22
dc.author.detail787026en_US


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International