Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Affiliation
China Agricultural University, Beijing, ChinaBeijing Laboratory of Food Quality and Safety, Beijing, China
Coventry University
Shihezi University, Shihezi, China
University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
Issue Date
2017-11-20
Metadata
Show full item recordAbstract
Effective and efficient measurement and determination of critical quality parameter(s) is the key to improve the traceability and transparency of the table grapes quality as well as the sustainability performance of the table grapes cold chain logistics, and ensure the table grapes quality and safety. This paper is to determine the critical quality parameter(s) in the cold chain logistics through the real time monitoring of the temperature fluctuation implemented with the Wireless Sensor Network (WSN), and the correlation analysis among the various quality parameters. The assessment was conducted through three experiments. Experiment I indicated that the temperature have a large fluctuation from 0 °C to 30 °C, and the critical temperatures could be determined as 0 °C, 5 °C, 10 °C, 15 °C, 20 °C, 25 °C and 30 °C. Experiment II described that the firmness and moisture loss rate, whose Pearson correlation coefficient with the sensory evaluation were all greater than 0.9 at the critical temperatures determined in Experiment I, could be the critical quality parameters. Experiment III illustrated that the critical quality parameters, firmness and moisture loss rate, could be reliable indicators of table grapes quality by the Arrhenius kinetic equation, and results showed that the evaluation model based on the firmness is better to predict the shelf life than that based on the moisture loss rate. The best quality table grapes could be provided for the consumers via the easily and directly tracing and controlling the critical quality parameters in real time in actual cold chain logistics.Citation
Xiao, X., He, Q., Li, Z., Antoce, A.O. and Zhang, X., (2017). 'Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis'. Food Control, 73, pp.1556-1563. DOI: 10.1016/j.foodcont.2016.11.019Publisher
Elsevier BVJournal
Food ControlDOI
10.1016/j.foodcont.2016.11.019Additional Links
https://www.sciencedirect.com/science/article/pii/S0956713516306338https://pureportal.coventry.ac.uk/en/publications/improving-traceability-and-transparency-of-table-grapes-cold-chai-2
Type
ArticleLanguage
enISSN
0956-7135ae974a485f413a2113503eed53cd6c53
10.1016/j.foodcont.2016.11.019