Show simple item record

dc.contributor.authorSweet, Michael
dc.contributor.authorBurian, Alfred
dc.contributor.authorFifer, James
dc.contributor.authorBulling, Mark
dc.contributor.authorElliott, David
dc.contributor.authorRaymundo, Laurie
dc.date.accessioned2020-01-15T13:59:24Z
dc.date.available2020-01-15T13:59:24Z
dc.date.issued2019-11-22
dc.identifier.citationSweet, M., Burian, A., Fifer, J., Bulling, M., Elliott, D. and Raymundo, L., (2019). 'Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease'. Microbiome, 7(1), pp. 1-14. DOI: 10.1186/s40168-019-0759-6en_US
dc.identifier.issn2049-2618
dc.identifier.doi10.1186/s40168-019-0759-6
dc.identifier.urihttp://hdl.handle.net/10545/624397
dc.description.abstractCoral reefs face unprecedented declines in diversity and cover, a development largely attributed to climate change-induced bleaching and subsequent disease outbreaks. Coral-associated microbiomes may strongly influence the fitness of their hosts and alter heat tolerance and disease susceptibility of coral colonies. Here, we describe a new coral disease found in Micronesia and present a detailed assessment of infection-driven changes in the coral microbiome. Combining field monitoring and histological, microscopic and next-generation barcoding assessments, we demonstrate that the outbreak of the disease, named ‘grey-patch disease’, is associated with the establishment of cyanobacterial biofilm overgrowing coral tissue. The disease is characterised by slow progression rates, with coral tissue sometimes growing back over the GPD biofilm. Network analysis of the corals’ microbiome highlighted the clustering of specific microbes which appeared to benefit from the onset of disease, resulting in the formation of ‘infection clusters’ in the microbiomes of apparently healthy corals. Our results appear to be in contrast to the recently proposed Anna-Karenina principle, which states that disturbances (such as disease) trigger chaotic dynamics in microbial communities and increase β-diversity. Here, we show significantly higher community similarity (compositional homogeneity) in the pathobiome of diseased corals, compared to the microbiome associated with apparently healthy tissue. A possible explanation for this pattern is strong competition between the pathogenic community and those associated with the ‘healthy’ coral holobiont, homogenising the composition of the pathobiome. Further, one of our key findings is that multiple agents appear to be involved in degrading the corals’ defences causing the onset of this disease. This supports recent findings indicating a need for a shift from the one-pathogen-one-disease paradigm to exploring the importance of multiple pathogenic players in any given disease.en_US
dc.description.sponsorshipNAen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.urlhttps://link.springer.com/article/10.1186/s40168-019-0759-6en_US
dc.subjectmicrobiomeen_US
dc.subjectcyanobacteriaen_US
dc.subjectanna-kareninaen_US
dc.subjectmicrobial networksen_US
dc.titleCompositional homogeneity in the pathobiome of a new, slow-spreading coral diseaseen_US
dc.typeArticleen_US
dc.contributor.departmentUniversity of Derbyen_US
dc.contributor.departmentUniversity of Guamen_US
dc.identifier.journalMicrobiomeen_US
dc.source.volume7
dc.source.issue1
dcterms.dateAccepted2019
dc.author.detail783337en_US


This item appears in the following Collection(s)

Show simple item record