Show simple item record

dc.contributor.authorLarcombe, Peter J.
dc.contributor.authorO'Neill, Sam T.
dc.date.accessioned2019-01-03T10:26:20Z
dc.date.available2019-01-03T10:26:20Z
dc.date.issued2018-05
dc.identifier.citationLarcombe, P.J. and O’Neill, S.T. (2018) ‘A generating function approach to the automated evaluation of sums of exponentiated multiples of generalized Catalan number linear combinations’, Fibonacci Quarterly, 56(2), pp. 121–125.en
dc.identifier.issn0015-0517
dc.identifier.urihttp://hdl.handle.net/10545/623252
dc.description.abstractBased on a previous technique deployed in some specific low order cases, we develop an automated computational procedure to evaluate instances within a class of infinite series comprising exponentiated multiples of generalized linear combinations of Catalan numbers. The methodology is explained, and new results given.
dc.description.sponsorshipN/Aen
dc.language.isoenen
dc.publisherThe Fibonacci Associationen
dc.relation.urlhttps://www.fq.math.ca/56-2.htmlen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCatalan number series evaluationsen
dc.titleA generating function approach to the automated evaluation of sums of exponentiated multiples of generalized Catalan number linear combinations.en
dc.typeArticleen
dc.contributor.departmentUniversity of Derbyen
dc.identifier.journalFibonacci Quarterlyen
refterms.dateFOA2019-02-28T18:01:29Z
html.description.abstractBased on a previous technique deployed in some specific low order cases, we develop an automated computational procedure to evaluate instances within a class of infinite series comprising exponentiated multiples of generalized linear combinations of Catalan numbers. The methodology is explained, and new results given.


Files in this item

Thumbnail
Name:
(2018) A Generating Function ...
Size:
180.6Kb
Format:
PDF
Description:
Post-Print

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/