Show simple item record

dc.contributor.authorALICE Collaboration
dc.contributor.authorBarnby, Lee
dc.date.accessioned2018-03-29T13:54:23Z
dc.date.available2018-03-29T13:54:23Z
dc.date.issued2018-03-06
dc.identifier.citationALICE Collaboration (2018) 'Measurement of Z0-boson production at large rapidities in Pb–Pb collisions at √sNN = 5.02 TeV.', Physics Letters B, Vol. 780, pp. 372-383en
dc.identifier.issn03702693
dc.identifier.doi10.1016/j.physletb.2018.03.010
dc.identifier.urihttp://hdl.handle.net/10545/622478
dc.description.abstractThe production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN = 5.02 TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0 → μ+ μ−), based on muons selected with pseudo-rapidity −4.0 < η < −2.5 and pT > 20 GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67 ± 0.11 (stat.) ± 0.03 (syst.) ± 0.06 (corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0–90% centrality class and by 3σ in the 0–20% central collisions.
dc.description.sponsorshipA.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research – Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.Open Access funded by SCOAP - Sponsoring Consortium for Open Access Publishing in Particle Physicsen
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0370269318301977?via%3Dihub#ac0010en
dc.subjectNuclear reactionsen
dc.subjectParticle physicsen
dc.subjectProton-lead collisionsen
dc.subjectProtonsen
dc.titleMeasurement of Z0-boson production at large rapidities in Pb–Pb collisions at √sNN = 5.02 TeV.en
dc.typeArticleen
dc.contributor.departmentSTFC Daresbury Laboratoryen
dc.identifier.journalPhysics Letters Ben
html.description.abstractThe production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN = 5.02 TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0 → μ+ μ−), based on muons selected with pseudo-rapidity −4.0 < η < −2.5 and pT > 20 GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67 ± 0.11 (stat.) ± 0.03 (syst.) ± 0.06 (corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0–90% centrality class and by 3σ in the 0–20% central collisions.


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record