Name:
(2017) JNCA Bagdasar-Popovici- ...
Size:
143.4Kb
Format:
PDF
Description:
Pre-print (accepted)
Abstract
Any local maximizer of an explicitly quasiconvex real-valued function is actually a global minimizer, if it belongs to the intrinsic core of the function's domain. In this paper we show that similar properties hold for componentwise explicitly quasiconvex vector-valued functions, with respect to the concepts of ideal, strong and weak optimality. We illustrate these results in the particular framework of linear fractional multicriteria optimization problems.Citation
Bagdasar, O. and Popovici, N. (2017) 'Local maximizers of generalized convex vector-valued functions., Journal of Nonlinear and Convex Analysis, 18(12), pp. 2229-2250.Publisher
Yokohama PublishersJournal
Journal of Nonlinear and Convex AnalysisType
ArticleLanguage
enISSN
13454773EISSN
18805221Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/