• Login
    View Item 
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UDORACommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About and further information

    AboutOpen Access WebpagesOpen Access PolicyTake Down Policy University Privacy NoticeUniversity NewsTools for ResearchersLibraryUDo

    Statistics

    Display statistics

    Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    ALICE Collaboration
    Barnby, Lee cc
    Affiliation
    European Organization for Nuclear Research (CERN)
    Issue Date
    2017-04-24
    
    Metadata
    Show full item record
    Abstract
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP)1. Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed2, 3, 4, 5, 6. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions7, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions8, 9, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p–Pb collision results10, 11, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb–Pb collisions, where a QGP is formed.
    Citation
    ALICE Collaboration (2017) 'Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions', Nature Physics, 13, 535–539
    Publisher
    Springer Nature
    Journal
    Nature Physics
    URI
    http://hdl.handle.net/10545/622245
    DOI
    10.1038/nphys4111
    Additional Links
    http://www.nature.com/nphys/journal/v13/n6/full/nphys4111.html
    Type
    Article
    Language
    en
    ISSN
    17452473
    EISSN
    17452481
    ae974a485f413a2113503eed53cd6c53
    10.1038/nphys4111
    Scopus Count
    Collections
    Department of Electronics, Computing & Maths

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.