Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.
Name:
10.1007-s11661-013-2094-z.pdf
Size:
3.005Mb
Format:
PDF
Description:
Publisher's PDF (Open Access CCBY)
Abstract
Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension– compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarsegrained samples have also been studied.Citation
Gzyl, M. et al (2013) 'Mechanical Properties and Microstructure of AZ31B Magnesium Alloy Processed by I-ECAP', Metallurgical and Materials Transactions A, 45 (3):1609 .Publisher
SpringerJournal
Metallurgical and Materials Transactions ADOI
10.1007/s11661-013-2094-zAdditional Links
http://link.springer.com/10.1007/s11661-013-2094-zType
ArticleLanguage
enISSN
10735623EISSN
15431940ae974a485f413a2113503eed53cd6c53
10.1007/s11661-013-2094-z
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Archived with thanks to Metallurgical and Materials Transactions A