Robust fault estimation for wind turbine energy via hybrid systems.
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Abstract
The rapid development of modern wind turbine technology has led to increasing demand for improving system reliability and practical concern for robust fault monitoring scheme. This paper presents the investigation of a 5 MW Dynamic Wind Turbine Energy System that was designed to sustain condition monitoring and fault diagnosis with the goal of improving the reliability operations of universal practical control systems. A hybrid stochastic technique is proposed based on an augmented observer combined with eigenstructure assignment for the parameterisation and the genetic algorithm (GA) optimisation to address the attenuation of uncertainty mostly generated by disturbances. Scenarios-based are employed to explore sensor and actuator faults that have direct and indirect impacts on modern wind turbine system, based on monitoring components that are prone to malfunction. The analysis is aimed to determine the effect of concerned simulated faults from uncertainty in respect to environmental disturbances mostly challenged in real-world operations. The efficiency of the proposed approach will improve the reliability performance of wind turbine system states and diagnose uncertain faults simultaneously. The simulation outcomes illustrate the robustness of the dynamic turbine systems with a diagnostic performance to advance the practical solutions for improving reliable systems.Citation
Odofin, S. et al (2018) 'Robust fault estimation for wind turbine energy via hybrid systems', Renewable Energy, Vol. 120, pp. 289.- 299.Publisher
ElsevierJournal
Renewable EnergyDOI
10.1016/j.renene.2017.12.031Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0960148117312351Type
ArticleLanguage
enISSN
09601481ae974a485f413a2113503eed53cd6c53
10.1016/j.renene.2017.12.031