• Login
    View Item 
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UDORACommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About and further information

    AboutOpen Access WebpagesOpen Access PolicyTake Down Policy University Privacy NoticeUniversity NewsTools for ResearchersLibraryUDo

    Statistics

    Display statistics

    Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Liu, Jia cc
    Feld, Dustin
    Xue, Yong cc
    Garcke, Jochen
    Soddemann, Thomas
    Affiliation
    Chinese Academy of Sciences
    Fraunhofer Institute of Algorithms and Scientific Computing
    Issue Date
    2015-06-11
    
    Metadata
    Show full item record
    Abstract
    Quantitative retrieval is a growing area in remote sensing due to the rapid development of remote instruments and retrieval algorithms. The aerosol optical depth (AOD) is a significant optical property of aerosol which is involved in further applications such as the atmospheric correction of remotely sensed surface features, monitoring of volcanic eruptions or forest fires, air quality, and even climate changes from satellite data. The AOD retrieval can be computationally expensive as a result of huge amounts of remote sensing data and compute-intensive algorithms. In this paper, we present two efficient implementations of an AOD retrieval algorithm from the moderate resolution imaging spectroradiometer (MODIS) satellite data. Here, we have employed two different high performance computing architectures: multicore processors and a graphics processing unit (GPU). The compute unified device architecture C (CUDA-C) has been used for the GPU implementation for NVIDIA's graphic cards and open multiprocessing (OpenMP) for thread-parallelism in the multicore implementation. We observe for the GPU accelerator, a maximal overall speedup of 68.x for the studied data, whereas the multicore processor achieves a reasonable 7.x speedup. Additionally, for the largest benchmark input dataset, the GPU implementation also shows a great advantage in terms of energy efficiency with an overall consumption of 3.15 kJ compared to 58.09 kJ on a CPU with 1 thread and 38.39 kJ with 16 threads. Furthermore, the retrieval accuracy of all implementations has been checked and analyzed. Altogether, using the GPU accelerator shows great advantages for an application in AOD retrieval in both performance and energy efficiency metrics. Nevertheless, the multicore processor provides the easier programmability for the majority of today's programmers. Our work exploits the parallel implementations, the performance, and the energy efficiency features of GPU accelerators and multicore processors. With this paper, we attempt to give suggestions to geoscientists demanding for efficient desktop solutions.
    Citation
    Liu, J. et al (2015) 'Multicore Processors and Graphics Processing Unit Accelerators for Parallel Retrieval of Aerosol Optical Depth From Satellite Data: Implementation, Performance, and Energy Efficiency', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (5):2306 .
    Publisher
    IEEE
    Journal
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
    URI
    http://hdl.handle.net/10545/621609
    DOI
    10.1109/JSTARS.2015.2438893
    Additional Links
    http://ieeexplore.ieee.org/document/7122223/
    Type
    Article
    Language
    en
    ISSN
    19391404
    EISSN
    21511535
    ae974a485f413a2113503eed53cd6c53
    10.1109/JSTARS.2015.2438893
    Scopus Count
    Collections
    Department of Electronics, Computing & Maths

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.