• Login
    View Item 
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    •   Home
    • Research Publications
    • Engineering & Technology
    • Department of Electronics, Computing & Maths
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UDORACommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About and further information

    AboutOpen Access WebpagesOpen Access PolicyTake Down Policy University Privacy NoticeUniversity NewsTools for ResearchersLibraryUDo

    Statistics

    Display statistics

    Event detection and user interest discovering in social media data streams

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Liu_2017_Event_Detection_and_U ...
    Size:
    1009.Kb
    Format:
    PDF
    Description:
    Accepted manuscript
    Download
    Authors
    Shi, Lei-lei
    Liu, Lu cc
    Wu, Yan
    Jiang, Liang
    Hardy, James
    Affiliation
    Jiangsu University
    University of Derby
    Issue Date
    2017-03-01
    
    Metadata
    Show full item record
    Abstract
    Social media plays an increasingly important role in people’s life. Microblogging is a form of social media which allows people to share and disseminate real-life events. Broadcasting events in microblogging networks can be an effective method of creating awareness, divulging important information and so on. However, many existing approaches at dissecting the information content primarily discuss the event detection model and ignore the user interest which can be discovered during event evolution. This leads to difficulty in tracking the most important events as they evolve including identifying the influential spreaders. There is further complication given that the influential spreaders interests will also change during event evolution. The influential spreaders play a key role in event evolution and this has been largely ignored in traditional event detection methods. To this end, we propose a user-interest model based event evolution model, named the HEE (Hot Event Evolution) model. This model not only considers the user interest distribution, but also uses the short text data in the social network to model the posts and the recommend methods to discovering the user interests. This can resolve the problem of data sparsity, as exemplified by many existing event detection methods, and improve the accuracy of event detection. A hot event automatic filtering algorithm is initially applied to remove the influence of general events, improving the quality and efficiency of mining the event. Then an automatic topic clustering algorithm is applied to arrange the short texts into clusters with similar topics. An improved user-interest model is proposed to combine the short texts of each cluster into a long text document simplifying the determination of the overall topic in relation to the interest distribution of each user during the evolution of important events. Finally a novel cosine measure based event similarity detection method is used to assess correlation between events thereby detecting the process of event evolution. The experimental results on a real Twitter dataset demonstrate the efficiency and accuracy of our proposed model for both event detection and user interest discovery during the evolution of hot events.
    Citation
    Shi, L. (2017) 'Event Detection and User Interest Discovering in Social Media Data Streams', IEEE Access, DOI: 10.1109/ACCESS.2017.2675839
    Publisher
    IEEE
    Journal
    IEEE Access
    URI
    http://hdl.handle.net/10545/621595
    DOI
    10.1109/ACCESS.2017.2675839
    Additional Links
    http://ieeexplore.ieee.org/document/7865955/
    Type
    Article
    Language
    en
    ISSN
    21693536
    ae974a485f413a2113503eed53cd6c53
    10.1109/ACCESS.2017.2675839
    Scopus Count
    Collections
    Department of Electronics, Computing & Maths

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.