• Electrical power and energy systems for transportation applications

      Stewart, Paul; Bingham, Chris; University of Derby (Multidisciplinary Digital Publishing Institute (MDPI), 2016-07-14)
      This book contains the successful invited submissions [1-25] to a Special Issue of Energies on the subject area of “Electrical Power and Energy Systems for Transportation Applications�.
    • An investigation into metal coated additively manufactured polymer lattice structures

      Farhan Khan, Muhammad; Williams, Gavin; Maligno, Angelo; University of Derby (OMICS International, 2016-06-13)
      The performance of polyamide lattices with electro-deposited metal was evaluated. This was achieved by irreversible compaction of the structures involved in the investigation. The versatility of additive manufacturing was utilized in order to fabricate the lattices. It demonstrated that metal coating of polymer lattices could significantly improve their compression properties. This methodology could provide new opportunities in terms of light weight energy absorbing structures in a wide variety of applications.
    • A new aircraft architecture based on the ACHEON Coanda effect nozzle: flight model and energy evaluation

      Marques, Jose Pascoa; Porreca, Eliana; Smith, Tim; Stewart, Paul; Subhash, Maharshi; Sunol, Anna; Vucinic, Dean; Trancossi, Michele; Madonia, Mauro; Dumas, Antonio; et al. (Springer, 2016-03-12)
      Aeronautic transport has an effective necessity of reducing fuel consumption and emissions to deliver efficiency and competitiveness driven by today commercial and legislative requirements. Actual aircraft configurations scenario allows envisaging the signs of a diffused technological maturity and they seem very near their limits. This scenario clearly shows the necessity of radical innovations with particular reference to propulsion systems and to aircraftarchitecture consequently. Methods This paper presents analyses and discusses a promising propulsive architecture based on an innovative nozzle, which allows realizing the selective adhesion of two impinging streams to two facing jets to two facing Coanda surfaces. This propulsion system is known with the acronym ACHEON (Aerial Coanda High Efficiency Orienting Nozzle). This paper investigates how the application of an all-electric ACHEONs propulsion system to a very traditional commuter aircraft can improve its relevant performances. This paper considers the constraints imposed by current state-of-the-art electric motors, drives, storage and conversion systems in terms of both power/energy density and performance and considers two different aircraft configurations: one using battery only and one adopting a more sophisticated hybrid cogeneration. The necessity of producing a very solid analysis has forced to limit the deflection of the jet in a very conservative range (±15°) with respect to the horizontal. This range can be surely produced also by not optimal configurations and allow minimizing the use of DBD. From the study of general flight dynamics equations of the aircraft in two-dimensional form it has been possible to determine with a high level of accuracy the advantages that ACHEON brings in terms of reduced stall speed and of reduced take-off and landing distances. Additionally, it includes an effective energy analysis focusing on the efficiency and environmental advantages of the electric ACHEON based propulsion by assuming the today industrial grade high capacity batteries with a power density of 207 Wh/kg. Results It has been clearly demonstrated that a short flight could be possible adopting battery energy storage, and longer duration could be possible by adopting a more sophisticated cogeneration system, which is based on cogeneration from a well-known turboprop, which is mostly used in helicopter propulsion. This electric generation system can be empowered by recovering the heat and using it to increase the temperature of the jet. It is possible to transfer this considerable amount of heat to the jet by convection and direct fluid mixing. In this way, it is possible to increase the energy of the jets of an amount that allows more than recover the pressure losses in the straitening section. In this case, it is then possible to demonstrate an adequate autonomy of flight and operative range of the aircraft. The proposed architecture, which is within the limits of the most conservative results obtained, demonstrates significant additional benefits for aircraft manoeuvrability. In conclusion, this paper has presented the implantation of ACHEON on well-known traditional aircraft, verifying the suitability and effectiveness of the proposed system both in terms of endurance with a cogeneration architecture and in terms of manoeuvrability. It has demonstrated the potential of the system in terms of both takeoff and landing space requirements. Conclusions This innovation opens interesting perspectives for the future implementation of this new vector and thrust propulsion system, especially in the area of greening the aeronautic sector. It has also demonstrated that ACHEON has the potential of renovating completely a classic old aircraft configuration such as the one of Cessna 402.
    • Toward a More Realistic, Cost-Effective, and Greener Ground Movement Through Active Routing—Part I: Optimal Speed Profile Generation

      Chen, Jun; Weiszer, Michal; Stewart, Paul; Shabani, Masihalah; University of Derby - IISE (2015-11-05)
      Abstract- Among all airport operations, aircraft ground movement plays a key role in improving overall airport capacity as it links other airport operations. Moreover, ever-increasing air traffic, rising costs, and tighter environmental targets create pressure to minimize fuel burn on the ground. However, current routing functions envisioned in Advanced Surface Movement, Guidance and Control Systems almost exclusively consider the most time efficient solution and apply a conservative separation to ensure conflict-free surface movement, sometimes with additional buffer times to absorb small deviations from the taxi times. Such an overly constrained routing approach may result in either a too tight planning for some aircraft so that fuel efficiency is compromised due to multiple acceleration phases, or performance could be further improved by reducing the separation and buffer times. In light of this, Parts I and II of this paper present a new Active Routing (AR) framework with the aim of providing a more realistic, cost-effective, and environmental friendly surface movement, targeting some of the busiest international hub airports. Part I of this paper focuses on optimal speed profile generation using a physics-based aircraft movement model. Two approaches based, respectively, on the Base of Aircraft Data and the International Civil Aviation Organization engine emissions database have been employed to model fuel consumption. These models are then embedded within a multiobjective optimization framework to capture the essence of different speed profiles in a Pareto optimal sense. The proposed approach represents the first attempt to systematically address speed profiles with competing objectives. Results reveal an apparent tradeoff between fuel burn and taxi times irrespective of fuel consumption modeling approaches. This will have a profound impact on the routing and scheduling and open the door for the new concept of AR discussed in Part II of this paper.
    • Preference-based evolutionary algorithm for airport runway scheduling and ground movement optimisation

      Weiszer, Michal; Chen, Jun; Stewart, Paul; University of Derby (IEEE, 2015-09-15)
      As airports all over the world are becoming more congested together with stricter environmental regulations put in place, research on optimisation of airport surface operations started to consider both time and fuel related objectives. However, as both time and fuel can have a monetary cost associated with them, this information can be utilised as preference during the optimisation to guide the search process to a region with the most cost efficient solutions. In this paper, we solve the integrated optimisation problem combining runway scheduling and ground movement problem by using a multi-objective evolutionary framework. The proposed evolutionary algorithm is based on modified crowding distance and outranking relation which considers cost of delay and price of fuel. Moreover, the preferences are expressed in a such way, that they define a certain range in prices reflecting uncertainty. The preliminary results of computational experiments with data from a major airport show the efficiency of the proposed approach.
    • Multifunctional unmanned reconnaissance aircraft for low-speed and STOL operations

      Trancossi, Michele; Bingham, Chris; Capuani, Alfredo; Das, Shyam; Dumas, Antonio; Grimaccia, Francesco; Madonia, Mauro; Pascoa, Jose; Smith, Tim; Stewart, Paul; et al. (SAE International, 2015-09-15)
      This paper presents a novel UAS (Unmanned Aerial System) designed for excellent low speed operations and VTOL performance. This aerial vehicle concept has been designed for maximizing the advantages by of the ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle) propulsion system, which has been studied in a European commission under 7th framework programme.This UAS concept has been named MURALS (acronym of Multifunctional Unmanned Reconnaissance Aircraft for Low-speed and STOL operation). It has been studied as a joint activity of the members of the project as an evolution of a former concept, which has been developed during 80s and 90s by Aeritalia and Capuani. It has been adapted to host an ACHEON based propulsion system. In a first embodiment, the aircraft according to the invention has a not conventional shape with a single fuselage and its primary objective is to minimize the variation of the pitching moment allowing low speed operations. The shape with convex wings has been specifically defined to allow a future possibility of enabling stealth operations.Main objective of the design activity has been focused on low speed flight, very short take off and landing, and a control possibility by mean of two mobile surfaces in the front canard, which allow changing the pitch angle, and allows an almost complete plane control in combination with an ACHEON variable angle of thrust propulsion system. The design considers has been specifically to allow flying at a speed which is lower than 12 m/s with an high angle of attach (over 7°), without losses in terms of manoeuvrability and agility. These features allow innovative uses such as road monitoring, and police support and are characterized by a breakthrough performance level.A complete optimal sizing of the aircraft has been performed, together with an effective performance analysis, which allows identifying the strong points and the potential problems of the project. An effective energy analysis has been performed also. An effective prototyping is expected in about one year.
    • Optimal speed profile generation for airport ground movement with consideration of emissions

      Chen, Jun; Weiszer, Michal; Stewart, Paul; University of Derby (IEEE, 2015-09)
      Emissions during the ground movement are mostly calculated based on International Civil Aviation Organisation (ICAO) emission databank. The fuel flow rate is normally assumed as a constant, hence the emission index. Therefore, no detailed discrimination of power settings during ground movement is considered to account for different emissions at different power settings. This may lead to a suboptimal and often unrealistic taxi planning. At the heart of the recently proposed Active Routing (AR) framework for airport ground movement is the unimpeded optimal speed profile generation, taking into account both time and fuel efficiency. However, emissions have not been included in the process of generating optimal speed profiles. Taking into account emissions in ground operations is not a trial task as not all emissions can be reduced on the same path of reducing time and fuel burn. In light of this, in this paper, a detailed analysis of three main emissions at the airports, viz. CO, Total Hydrocarbon (HC), and NOx, are carried out in order to obtain a minimum number of conflicting objectives for generating optimal speed profiles. The results show that NOx has a strong linear correlation with fuel burn across all aircraft categories. For the heavy aircraft, HC and CO should be treated individually apart from the time and fuel burn objectives. For medium and light aircraft, a strong correlation between HC, CO and time has been observed, indicating a reduced number of objectives will be sufficient to account for taxi time, fuel burn and emissions. The generated optimal speed profiles with consideration of different emissions will have impact on the resulted taxiing planning using the AR and also affect decisions regarding airport regulations.
    • A real-time Active Routing approach via a database for airport surface movement

      Weiszer, Michal; Chen, Jun; Stewart, Paul; Institute for Innovation in Sustainable Engineering, Derby, United Kingdom (2015-07-29)
      Airports face challenges due to the increasing volume of air traffic and tighter environmental restrictions which result in a need to actively integrate speed profiles into conventional routing and scheduling procedure. However, only until very recently, the research on airport ground movement has started to take into account such a speed profile optimisation problem actively so that not only time efficiency but also fuel saving and decrease in airport emissions can be achieved at the same time. It is envisioned that the realism of planning could also be improved through speed profiles. However, due to the multi-objective nature of the problem and complexity of the investigated models (objective functions), the existing speed profile optimisation approach features high computational demand and is not suitable for an on-line application. In order to make this approach more competitive for real-world application and to meet limits imposed by International Civil Aviation Organization for on-line decision time, this paper introduces a pre-computed database acting as a middleware to effectively separate the planning (routing and scheduling) module and the speed profile generation module. Employing a database not only circumvents duplicative optimisation for the same taxiway segments, but also completely avoids the computation of speed profiles during the on-line decision support owing a great deal to newly proposed database initialization procedures. Moreover, the added layer of database facilitates, in the future, more complex and realistic models to be considered in the speed profile generation module, without sacrificing on-line decision time. The experimental results carried out using data from a major European hub show that the proposed approach is promising in speeding up the search process.
    • Advances in control engineering

      Stewart, Paul; University of Derby (Multidisciplinary Digital Publishing Institute (MDPI), 2015-06-30)
      The last twenty years have seen a radical step-change in the capability and application of Control Engineering, brought about by advances in computational speed and capacity. Control design for contemporary, complex engineering systems has developed alongside Computer Aided Control System Design, powerful real-time embedded computation, and both off-line and on-line optimization techniques. This Special Issue will bring together papers, which particularly describe recent advances in Control Engineering in industrial applications and complex engineering systems, describing the application of novel theory across all areas of Automation. Papers which include practical experimental results are particularly encouraged, as are papers which set Control advances in the wider context of, for example, society, economics, energy and environment.
    • Assessment of structural integrity of subsea wellhead system: analytical and numerical study

      Maligno, Angelo; Citarella, Roberto; Silberschmidt, Vadim V.; Soutis, Constantinos; University of Derby; University of Salerno; Loughborough University; University of Manchester (Italian Group of Fracture, 2015-01)
      Subsea wellhead systems exposed to severe fatigue loading are becoming increasingly a significant problem in offshore drilling operations due to their applications in wells with higher levels of pressure and temperature, situated at larger depths and in harsher environments. This has led to a substantial increase in the weight and size of offshore equipment, which, in combination with different loading conditions related to the environmental factors acting on the vessel and riser, has greatly increased the loads acting on subsea well systems. In particular, severe fatigue loading acting on the subsea wellhead system was detected. For this reason, a combined analytical and numerical study investigating the critical effect of crack depth on the overall structural integrity of subsea wellhead systems under cyclic loading was carried out. The study is based on a Linear Elastic Fracture Mechanics (LEFM) approach.
    • FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading

      Citarella, Roberto; Maligno, Angelo; Shlyannikov, Valery; University of Salerno; University of Derby; Russian Academy of Sciences (Italian Group of Fracture, 2015-01)
      An edge crack propagation in a steel bar of circular cross-section undergoing multiaxial fatigue loads is simulated by Finite Element Method (FEM). The variation of crack growth behaviour is studied under axial and combined in phase axial+torsional fatigue loading. Results show that the cyclic Mode III loading superimposed on the cyclic Mode I leads to a fatigue life reduction. Numerical calculations are performed using the FEM software ZENCRACK to determine the crack path and fatigue life. The FEM numerical predictions have been compared against corresponding experimental and numerical data, available from literature, getting satisfactory consistency
    • Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion

      Cen, Zhaohui; Smith, Tim; Stewart, Paul; Stewart, Jill; University of Lincoln (2014-07-29)
      As a new alternative to tilting rotors or turbojet vector mechanical oriented nozzles, ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle) has enormous advantages because it is free of moving elements and highly effective for Vertical/Short-Take-Off and Landing (V/STOL) aircraft. In this paper, an integrated flight/ thrust vectoring control scheme for a jet powered Unmanned Aerial Vehicle (UAV) with an ACHEON nozzle is proposed to assess its suitability in jet aircraft flight applications. Firstly, a simplified Thrust-Vectoring (TV) population model is built based on CFD simulation data and parameter identification. Secondly, this TV propulsion model is embedded as a jet actuator for a benchmark fixed-wing ‘Aerosonde’ UAV, and then a four “cascaded-loop” controller, based on nonlinear dynamic inversion (NDI), is designed to individually control the angular rates (in the body frame), attitude angles (in the wind frame), track angles (in the navigation frame), and position (in the earth-centered frame) . Unlike previous research on fixed-wing UAV flight controls or TV controls, our proposed four-cascaded NDI control law can not only coordinate surface control and TV control as well as an optimization controller, but can also implement an absolute self-position control for the autopilot flight control. Finally, flight simulations in a high-fidelity aerodynamic environment are performed to demonstrate the effectiveness and superiority of our proposed control scheme.
    • Aircraft taxi time prediction: Comparisons and insights

      Ravizza, Stefan; Chen, Jun; Atkin, Jason A. D.; Stewart, Paul; Burke, Edmund K.; University of Lincoln (Elsevier, 2014-01)
      The predicted growth in air transportation and the ambitious goal of the European Commission to have on-time performance of flights within 1 min makes efficient and predictable ground operations at airports indispensable. Accurately predicting taxi times of arrivals and departures serves as an important key task for runway sequencing, gate assignment and ground movement itself. This research tests different statistical regression approaches and also various regression methods which fall into the realm of soft computing to more accurately predict taxi times. Historic data from two major European airports is utilised for cross-validation. Detailed comparisons show that a TSK fuzzy rule-based system outperformed the other approaches in terms of prediction accuracy. Insights from this approach are then presented, focusing on the analysis of taxi-in times, which is rarely discussed in literature. The aim of this research is to unleash the power of soft computing methods, in particular fuzzy rule-based systems, for taxi time prediction problems. Moreover, we aim to show that, although these methods have only been recently applied to airport problems, they present promising and potential features for such problems.
    • Increasing aeronautic electric propulsion performances by cogeneration and heat recovery

      Trancossi, Michele; Dumas, Antonio; Stewart, Paul; Vucinic, Dean; University of Lincoln; University of Hull (Society of Automotive Engineers, 2014)
      Emissions from aviation have become a focus of increasing interest in recent years. The growth of civil aviation is faster than nearly all other economic sectors. Increased demand has led to a higher growth rate in fossil fuels consumption by the aviation sector. Despite more fuel-effcient and less polluting turbofan and turboprop engines, the growth of air travel contributes to increase pollution attributable to aviation. Aircraft are currently the only human-made in situ generators of emissions in the upper troposphere and in the stratosphere. The depletion of the stratosphere's ozone layer by CFCs and related chemicals has underscored the importance of anticipating other potential insults to the ozone layer. Different possible solutions have been advanced to reduce the environmental impact of aviation, such as electrication of ground operations, optimization of airline timetables and airspace usage, limitation of cruise altitude and increased use of turboprop aircrafts. Those improvements seem very limited answers, which allow only marginal reduction of the environmental footprint of air transport. Breakthrough concepts such as the all-electric aircrafts must be considered. Today state of electric-propulsion is demonstrating a lack of performance and operative range if compared to traditional propulsion concepts. This paper presents a novel concept which has been only envisaged before based on the increase of the performance and range of electric airplanes by an effective cogeneration on board. This concept aims to allow effective and more efcient electric aeronautic propulsion through next generation of green all electric propulsion
    • Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.

      Gzyl, Michal; Rosochowski, Andrzej; Pesci, Raphael; Olejnik, Lech; Yakushina, Evgenia; Wood, Paul; University of Strathclyde; ENSAM-Arts et Métiers ParisTech; Warsaw University of Technology (Springer, 2013-11-07)
      Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension– compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarsegrained samples have also been studied.
    • The trade-off between taxi time and fuel consumption in airport ground movement

      Ravizza, Stefan; Chen, Jun; Atkin, Jason A. D.; Burke, Edmund K.; Stewart, Paul; University of Lincoln (2013-02-13)
      Environmental issues play an important role across many sectors. This is particularly the case in the air transportation industry. One area which has remained relatively unexplored in this context is the ground movement problem for aircraft on the airport's surface. Aircraft have to be routed from a gate to a runway and vice versa and a key area of study is whether fuel burn and environmental impact improvements will best result from purely minimising the taxi times or whether it is also important to avoid multiple acceleration phases. This paper presents a newly developed multi-objective approach for analysing the trade-off between taxi time and fuel consumption during taxiing. The approach consists of a combination of a graph-based routing algorithm and a population adaptive immune algorithm to discover different speed profiles of aircraft. Analysis with data from a European hub airport has highlighted the impressive performance of the new approach. Furthermore, it is shown that the trade-off between taxi time and fuel consumption is very sensitive to the fuel-related objective function which is used.
    • Energy harvesting and power network architectures for the multibody advanced airship for transport high altitude cruiser-feeder airship concept

      Smith, Tim; Bingham, Chris; Stewart, Paul; Allarton, R.; Stewart, Jill; University of Lincoln (Institution of Mechanical Engineers, 2013-01-09)
      This article presents results of preliminary investigations in the development of a new class of airship. Specific focus is given to photo-electric harvesting as a primary energy source, power architectures and energy audits for life support, propulsion and ancillary loads to support the continuous daily operation of the primary airship (cruiser) at stratospheric altitudes (similar to 15 km). The results are being used to drive the requirements of the FP7 multibody advanced airship for transport programme, which is to globally transport both passengers and freight using a 'feeder-cruiser' concept. It is shown that there is a potential trade off to traditional cost and size limits and, although potentially very complex, a first-order approximation is used to demonstrate sensitivities to the economics of the lifting gas. This presented concept is substantially different to those of conventional aircraft due to the airship size and the inherent requirement to harvest and store sufficient energy during 'daylight' operation to guarantee safe operation during 'dark hours'. This is particularly apparent when the sizing of the proposed electrolyser is considered, as its size and mass increases nonlinearly with decreasing daylight duty. The study also considers the integration of photovoltaics with various electrical architectures, in safety critical environments. A mass audit is also included that shows that if the electrolyser was omitted in such systems, the overall impact will be small compared to structural and propulsion masses. It should be noted that although the technology bias is application specific, the underlying principles are much widely applicable to other energy harvesting and power management sectors.
    • A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system

      Páscoa, José; Dumas, Antonio; Trancossi, Michele; Stewart, Paul; Vucinic, Dean; University of Lincoln (2013-01-01)
      Abstract The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.
    • Special Issue "Electrical Power and Energy Systems"

      Stewart, Paul; Bingham, Chris; University of Derby (Multidisciplinary Digital Publishing Institute (MDPI), 2013-01)
      Electrical power and energy systems are at the forefront of application developments in renewable energy, smart grid, more electric aircraft, electric and hybrid vehicles and much more. The associated technologies and control methods are crucial to achieving global targets in energy efficiency and low-carbon operations, and will also contribute to key areas such as energy security. The greatest challenges occur when we combine new technologies at large-scale and often complex system level. The Special Edition will cover theoretical developments with special emphasis on applications in electrical power and energy systems. Topics of interest for publication include, but are not limited to: Renewable Energy Systems - Energy management; hybrid systems; distributed systems; renewable sources and integration; transient energy storage, charging networks. Electrical Machines, Drives and Applications - AC and DC machines and drives; multiscale systems modeling; remote monitoring and diagnosis; electric and hybrid vehicles; energy conversion, vehicle to grid interaction. Power Electronic Systems - Converters and emerging technologies; modeling simulation and control; power factor correction; power supplies; active filters; reliability and fault tolerance. Electrical Power Generation Systems - Modeling and simulation of electrical power systems; load management; power quality; distribution reliability; distributed and islanded power systems, sensor networks, communication and control. Electrical Power Systems Modeling and Control - Modeling and control methodologies and applications; intelligent systems; optimization and advanced heuristics; adaptive systems; robust control.
    • Numerical study of radiation and temperature phenomena for improved super-plastic sheet metal forming

      Mis, Michal; Emekwuru, Nwabueze; Kibble, Kevin; Hall, Richard; Spence, Julian; University of Wolverhampton (Trabs Tech Publications, 2012-12)
      In most super-plastic forming (SPF) investigations the focus is usually on the material aspects. In this paper the authors develop a model to improve the heat management of SPF. The model presented improved process possibilities. The improved design involves selective application of heat to the material. Final product shape can easily be controlled by accurate temperature control of the work piece. Numerical simulation has been carried out on various components including a ‘top hat shape‘ and a heat exchanger part. Simulation comparisons are made between selective heating and conventional processing, where all of the formed material is at the same temperature, and greater process efficiency of the selective heating approach is demonstrated.