• Optimal speed profile generation for airport ground movement with consideration of emissions

      Chen, Jun; Weiszer, Michal; Stewart, Paul; University of Derby (IEEE, 2015-09)
      Emissions during the ground movement are mostly calculated based on International Civil Aviation Organisation (ICAO) emission databank. The fuel flow rate is normally assumed as a constant, hence the emission index. Therefore, no detailed discrimination of power settings during ground movement is considered to account for different emissions at different power settings. This may lead to a suboptimal and often unrealistic taxi planning. At the heart of the recently proposed Active Routing (AR) framework for airport ground movement is the unimpeded optimal speed profile generation, taking into account both time and fuel efficiency. However, emissions have not been included in the process of generating optimal speed profiles. Taking into account emissions in ground operations is not a trial task as not all emissions can be reduced on the same path of reducing time and fuel burn. In light of this, in this paper, a detailed analysis of three main emissions at the airports, viz. CO, Total Hydrocarbon (HC), and NOx, are carried out in order to obtain a minimum number of conflicting objectives for generating optimal speed profiles. The results show that NOx has a strong linear correlation with fuel burn across all aircraft categories. For the heavy aircraft, HC and CO should be treated individually apart from the time and fuel burn objectives. For medium and light aircraft, a strong correlation between HC, CO and time has been observed, indicating a reduced number of objectives will be sufficient to account for taxi time, fuel burn and emissions. The generated optimal speed profiles with consideration of different emissions will have impact on the resulted taxiing planning using the AR and also affect decisions regarding airport regulations.
    • Preference-based evolutionary algorithm for airport runway scheduling and ground movement optimisation

      Weiszer, Michal; Chen, Jun; Stewart, Paul; University of Derby (IEEE, 2015-09-15)
      As airports all over the world are becoming more congested together with stricter environmental regulations put in place, research on optimisation of airport surface operations started to consider both time and fuel related objectives. However, as both time and fuel can have a monetary cost associated with them, this information can be utilised as preference during the optimisation to guide the search process to a region with the most cost efficient solutions. In this paper, we solve the integrated optimisation problem combining runway scheduling and ground movement problem by using a multi-objective evolutionary framework. The proposed evolutionary algorithm is based on modified crowding distance and outranking relation which considers cost of delay and price of fuel. Moreover, the preferences are expressed in a such way, that they define a certain range in prices reflecting uncertainty. The preliminary results of computational experiments with data from a major airport show the efficiency of the proposed approach.
    • Toward a more realistic, cost-effective, and greener ground movement through active routing: A multiobjective shortest path approach

      Chen, Jun; Atkin, Jason A. D.; Locatelli, Giorgio; Weiszer, Michal; Ravizza, Stefan; Stewart, Paul; Burke, Edmund K.; University of Derby (IEEE, 2016-10-31)
      This paper draws upon earlier work, which devel- oped a multiobjective speed profile generation framework for unimpeded taxiing aircraft. Here, we deal with how to seamlessly integrate such efficient speed profiles into a holistic decision- making framework. The availability of a set of nondominated unimpeded speed profiles for each taxiway segment, with respect to conflicting objectives, has the potential to significantly impact upon airport ground movement research. More specifically, the routing and scheduling function that was previously based on distance, emphasizing time efficiency, could now be based on richer information embedded within speed profiles, such as the taxiing times along segments, the corresponding fuel consumption, and the associated economic implications. The economic implica- tions are exploited over a day of operation, to take into account cost differences between busier and quieter times of the airport. Therefore, a more cost-effective and tailored decision can be made, respecting the environmental impact. Preliminary results based on the proposed approach show a 9%–50% reduction in time and fuel respectively for two international airports: Zurich and Manchester. The study also suggests that, if the average power setting during the acceleration phase could be lifted from the level suggested by the International Civil Aviation Organization, ground operations may simultaneously improve both time and fuel efficiency. The work described in this paper aims to open up the possibility to move away from the conventional distance-based routing and scheduling to a more comprehensive framework, capturing the multifaceted needs of all stakeholders involved in airport ground operations.