• Additive manufacturing of graded structures in IN718

      Wood, Paul; Gunputh, Urvashi; University of Derby (2019-08)
      Workshop at LSU, USA 13th to 16th August 2019
    • Selective laser melting of a high precision turbomachinery application in IN718 alloy

      Wood, Paul; Gunputh, Urvashi; Williams, Gavin; Carter, Wayne; Boud, Fathi; Bahi, Slim; Rusinek, Alexis; Kowalewski, Zbigniew; Nowak, Zdzisław; Libura, Tomasz; et al. (2021)
      The paper describes the manufacture of an outlet guide vane (OGV) component, in IN718 alloy, used in jet engines by Selective Laser Melting (SLM). The OGV component is a static part in the last stage of the compressor and is characterised as a series of airfoils or vanes secured by two flanged rings. The part tolerances at the leading and trailing edge require a high dimensional precision of +/-0.072 m whilst the profile tolerances are slightly more generous. The current challenge to manufacture a prototype OGV in IN718 alloy from a wrought stock involves a lengthy machining process in a hard-to-machine alloy. The tooling access is greatly restricted between the curved vanes, and the process involves careful fixturing and process management to mitigate residual stress in the component arising from the removal of material.
    • Analysis of machining performance of Inconel 718 printed by PBF-LM (powder bed fusion laser melting)

      Diaz-Alvarez, A; Diaz-Alvarez, J; Wood, P; Gunputh, U; Rusinek, A; Miguelez, M; University of Derby (2021)
      Additive manufacturing based on powder bed fusion laser melting (PBF-LM) is receiving increased attention in nickel-base superalloys manufacturing, due to the difficulty of removal processes of superalloys. PBF-LM process involves the use of high-energy laser beam (continuous or pulsed) to melt a thin layer of metal powder under an inert or near-inert gas atmosphere. After rapid solidification, a new layer of powder is deposited and exposed again to the laser, repeating the process until the whole piece is obtained. The Inconel 718 alloy is one of the most widely used nickel-based alloys in jet engines and industrial steam turbines for components that operate at high temperature and require high resistance to fatigue and corrosion. Additive manufacturing processes commonly require further finishing operations in order to achieve dimensional and surface specifications of the workpiece. The present study focuses on the analysis of machining of Inconel 718 pieces manufactured through the PBF-LM process, when it is compared with the reference piece manufactured through conventional method. This paper investigates the cutting forces and the relationship to tool wear in machining Inconel 718 alloy obtained through the PBF-LM technique and conventional methods.
    • Selective laser melting of stainless steel 316L pressure fittings

      Wood, Paul; University of Derby (2019-04-19)
      Workshop presentation DYNAMAT, 17-19 April 2019, Nicosia, Cyprus.
    • Analysis of parameters influencing build accuracy of a SLM printed compressor outlet guide vane

      Otubusin, Adetayo; Wood, Paul; Appleby, John; Adamczuk, Rafael; University of Derby; Florida Turbine Technologies (UK) Ltd, Derby (American Society of Mechanical Engineers, 2018-08-30)
      The paper describes the manufacture of an outlet guide vane (OGV) of jet engines by the Selective Laser Melting (SLM) process, in view of current challenges for conventional machining approaches such as; high airfoil profile tolerances, limited tooling access and hard to machine materials like nickel-chromium-based super alloys. Within this paper, analysis was conducted to investigate the influence of build parameters on possible distortion during printing that affect the build accuracy. These parameters include the part orientation on the build plate, thickness change to the flanges and the positioning of the support structure of each part. The configurations are 3D printed using the SLM approach. The chosen material is IN625. The printed parts are 3D scanned and the results are compared to the original CAD design. The results confirmed the presence of distortions in printed parts and the effect of parameter changes. Furthermore, it was shown that improvements to the print parameters are necessary to achieve a satisfactory profile tolerance.
    • Influences of horizontal and vertical build orientations and post-fabrication processes on the fatigue behavior of stainless steel 316l produced by selective laser melting

      Wood, Paul; Libura, Tomasz; Kowalewski, Zbigniew L.; Williams, Gavin; Serjouei, Ahmad; University of Derby; The Polish Academy of Sciences; Nottingham Trent University (MDPI AG, 2019-12-14)
      In this paper, the influences of build orientation and post-fabrication processes, including stress-relief, machining, and shot-peening, on the fatigue behavior of stainless steel (SS) 316L manufactured using selective laser melting (SLM) are studied. It was found that horizontally-built (XY) and machined (M) test pieces, which had not been previously studied in the literature, in both stress-relieved (SR) or non-stress-relieved (NSR) conditions show superior fatigue behavior compared to vertically-built (ZX) and conventionally-manufactured SS 316L. The XY, M, and SR (XY-M-SR) test pieces displayed fatigue behavior similar to the XY-M-NSR test pieces, implying that SR does not have a considerable effect on the fatigue behavior of XY and M test pieces. ZX-M-SR test pieces, due to their considerably lower ductility, exhibited significantly larger scatter and a lower fatigue strength compared to ZX-M-NSR samples. Shot-peening (SP) displayed a positive effect on improving the fatigue behavior of the ZX-NSR test pieces due to a compressive stress of 58 MPa induced on the surface of the test pieces. Fractography of the tensile and fatigue test pieces revealed a deeper understanding of the relationships between the process parameters, microstructure, and mechanical properties for SS 316L produced by laser systems. For example, fish-eye fracture pattern or spherical stair features were not previously observed or explained for cyclically-loaded SLM-printed parts in the literature. This study provides comprehensive insight into the anisotropy of the static and fatigue properties of SLM-printed parts, as well as the pre- and post-fabrication parameters that can be employed to improve the fatigue behavior of steel alloys manufactured using laser systems.
    • Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop.

      Stewart, Paul; Stone, David; Fleming, Peter; University of Sheffield (Elsevier, 2004-05-10)
      Evolutionary development of a fuzzy-logic controller is described and is evaluated in the context of hardware in the loop. It had been found previously that a robust speed controller could be designed for a DC motor motion control platform via off-line fuzzy logic controller design. However to achieve the desired performance, the controller required manual tuning on-line. This paper investigates the automatic design of a fuzzy logic controller directly onto hardware. An optimiser which modifies the fuzzy membership functions, rule base and defuzzification algorithms is considered. A multi-objective evolutionary algorithm is applied to the task of controller development, while an objective function ranks the system response to find the Pareto-optimal set of controllers. Disturbances are introduced during each evaluation at run-time in order to produce robust performance. The performance of the controller is compared experimentally with the fuzzy logic controller which has been designed off-line, and a standard PID controller which has been tuned online. The on-line optimised fuzzy controller is shown to be robust, possessing excellent steady-state and dynamic characteristics, demonstrating the performance possibilities of this type of approach to controller design.
    • Multi-objective evolutionary—fuzzy augmented flight control for an F16 aircraft

      Stewart, P; Gladwin, D; Parr, M; Stewart, Jill; University of Sheffield (2009-11-05)
      In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor.
    • Comparison of two novel MRAS based strategies for identifying parameters in permanent magnet synchronous motors.

      Liu, Kan; Zhang, Qiao; Zhu, Zi-Qiang; Zhang, Jing; Shen, An-Wen; Stewart, Paul; University of Lincoln UK (Springer., 2010-11-11)
      Two Model Reference Adaptive System (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on Lyapunov stability theorem and Popov stability criterion, respectively. The proposed estimators only need online detection of currents, voltages and rotor rotation speed, and are effective in the estimation of stator resistance, inductance and rotor flux-linkage simultaneously. Their performances are compared and verified through simulations and experiments. It shows that the two estimators are simple and have good robustness against parameter variation and are accurate in parameter tracking. However, the estimator based on Popov stability criterion, which can overcome the parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator in contrast to only one integral unit in the estimator based on Lyapunov stability theorem. In addition, there is no need of the expert experience which is required in designing a Lyapunov function
    • Improved decision support for engine-in-the-loop experimental design optimization.

      Gladwin, D; Stewart, P; Stewart, Jill; Chen, R; Winward, E; University of Sheffield; University of Lincoln.; Loughborough university (Sage., 2009-09-25)
      Experimental optimization with hardware in the loop is a common procedure in engineering and has been the subject of intense development, particularly when it is applied to relatively complex combinatorial systems that are not completely understood, or where accurate modelling is not possible owing to the dimensions of the search space. A common source of difficulty arises because of the level of noise associated with experimental measurements, a combination of limited instrument precision, and extraneous factors. When a series of experiments is conducted to search for a combination of input parameters that results in a minimum or maximum response, under the imposition of noise, the underlying shape of the function being optimized can become very difficult to discern or even lost. A common methodology to support experimental search for optimal or suboptimal values is to use one of the many gradient descent methods. However, even sophisticated and proven methodologies, such as simulated annealing, can be significantly challenged in the presence of noise, since approximating the gradient at any point becomes highly unreliable. Often, experiments are accepted as a result of random noise which should be rejected, and vice versa. This is also true for other sampling techniques, including tabu and evolutionary algorithms. After the general introduction, this paper is divided into two main sections (sections 2 and 3), which are followed by the conclusion. Section 2 introduces a decision support methodology based upon response surfaces, which supplements experimental management based on a variable neighbourhood search and is shown to be highly effective in directing experiments in the presence of a significant signal-to-noise ratio and complex combinatorial functions. The methodology is developed on a three-dimensional surface with multiple local minima, a large basin of attraction, and a high signal-to-noise ratio. In section 2, the methodology is applied to an automotive combinatorial search in the laboratory, on a real-time engine-in-the-loop application. In this application, it is desired to find the maximum power output of an experimental single-cylinder spark ignition engine operating under a quasi-constant-volume operating regime. Under this regime, the piston is slowed at top dead centre to achieve combustion in close to constant volume conditions. As part of the further development of the engine to incorporate a linear generator to investigate free-piston operation, it is necessary to perform a series of experiments with combinatorial parameters. The objective is to identify the maximum power point in the least number of experiments in order to minimize costs. This test programme provides peak power data in order to achieve optimal electrical machine design. The decision support methodology is combined with standard optimization and search methods — namely gradient descent and simulated annealing— in order to study the reductions possible in experimental iterations. It is shown that the decision support methodology significantly reduces the number of experiments necessary to find the maximum power solution and thus offers a potentially significant cost saving to hardware-in-the-loop experimentation.
    • Generator voltage stabilisation for series-hybrid electric vehicles.

      Stewart, P.; Gladwin, D.; Stewart, Jill; Cowley, R.; University of Sheffield (Elsevier, 2008-02-11)
      This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.
    • Experimental studies of turbulent intensity around a tidal turbine support structure

      Walker, Stuart; Cappietti, Lorenzo; University of Sheffield; Università degli Studi di Firenze (MDPI, 2017-04-07)
      Tidal stream energy is a low-carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulent intensity around the turbine blades. The study was conducted using the wave-current tank at the Laboratory of Maritime Engineering (LABIMA), University of Florence. A realistic flow environment (ambient turbulent intensity = 11%) was established. Turbulent intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element), in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler velocimetry (ADV) was used to record and calculate upstream and downstream turbulent intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.
    • Evaluating the environmental dimension of material efficiency strategies relating to the circular economy.

      Walker, Stuart; Coleman, Nick; Hodgson, Peter; Collins, Nicola; Brimacombe, Louis; University of Sheffield; Tata Steel; Savills Property Management (MDPI, 2018-03-01)
      Material efficiency is a key element of new thinking to address the challenges of reducing impacts on the environment and of resource scarcity, whilst at the same time meeting service and functionality demands on materials. Directly related to material efficiency is the concept of the Circular Economy, which is based on the principle of optimising the utility embodied in materials and products through the life-cycle. Although materials such as steel, on account of high recycling rates at end-of-life, are amongst the most ‘circular’ of manufactured materials, significant opportunities for greater material efficiency exist, which are yet to be widely implemented. Life Cycle Assessment (LCA) is commonly used to assess the environmental benefits of recovering and recycling materials through the manufacturing supply chain and at end-of-life. Using an example taken from renewable energy generation, this paper explores the correlation between product circularity and the environmental case for strategies designed to improve material efficiency. An LCA-based methodology for accounting for the recovery and reuse of materials from the supply chain and at end-of-life is used as the basis for calculating the carbon footprint benefits of five material efficiency scenarios. The results are compared with a number of proposed material circularity indicators. Two conclusions from this exercise are that (i) LCA methodologies based around end-of-life approaches are well placed for quantifying the environmental benefits of material efficiency and circular economy strategies and (ii) when applying indicators relating to the circularity of materials these should also be supported by LCA-based studies.
    • A computational strategy for damage-tolerant design of hollow shafts under mixed-mode loading condition.

      Lepore, Marcello Antonio; Yarullin, Rustam; Maligno, Angelo; Sepe, Raffaele; University of Salerno; Kazan Scientific Center of Russian Academy of Sciences; University of Derby; University of Naples Federico II; Department of Industrial Engineering; University of Salerno; Via G. Paolo II 132-84084 Fisciano Italy; Kazan Scientific Center of Russian Academy of Sciences; Lobachevsky Street 2/31-420111 Kazan Russia; et al. (Wiley, 2018-10-14)
      Three‐dimensional numerical analyses, using the finite element method (FEM), have been adopted to simulate fatigue crack propagation in a hollow cylindrical specimen, under pure axial or combined axial‐torsion loading conditions. Specimens, made of Al alloys B95AT and D16T, have been experimentally tested under pure axial load and combined in‐phase constant amplitude axial and torsional loadings. The stress intensity factors (SIFs) have been calculated, according to the J‐integral approach, along the front of a part through crack, initiated in correspondence of the outer surface of a hollow cylindrical specimen. The crack path is evaluated by using the maximum energy release rate (MERR) criterion, whereas the Paris law is used to calculate crack growth rates. A numerical and experimental comparison of the results is presented, showing a good agreement in terms of crack growth rates and paths.
    • Design for plant modularisation: nuclear and SMR.

      Wrigley, Paul; Wood, Paul; Stewart, Paul; Hall, Richard; Robertson, Dan; University of Derby; Rolls-Royce Plc; University of Derby, Derby, UK; University of Derby, Derby, UK; University of Derby, Derby, UK; et al. (ASME Journals, 2018-07-22)
      The UK Small Modular Reactor (UKSMR) programme has been established to develop an SMR for the UK energy market. Developing an SMR is a multi-disciplinary technical challenge, involving nuclear physics, electrical, mechanical, design, management, safety, testing to name but a few. In 2016 Upadhyay & Jain performed a literature review on modularity in Nuclear Power. They concluded that although modularisation has been utilised in nuclear to reduce costs, more work needs to be done to “create effective modules”. Hohmann et al also concluded the same for defining modules in the chemical process plant industry. The aim of this paper is to further define modules with a particular focus on an SMR for the UK market, the UKSMR. The methods highlighted may be relevant and applied to other international SMR designs or other types of plant. An overview and examination of modularisation work in nuclear to date is provided. The different configurations are defined for the Nuclear Steam Supply System (NSSS) in primary circuits and then for Balance of Plant (BOP) modules. A top level design process has been defined to aid in the understanding of design choices for current reactors and to further assist designing balance of plant modules. The paper then highlights areas for additional research that may further support module design and definition.
    • Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants.

      Wrigley, P.A.; Wood, Paul; Stewart, Paul; Hall, Richard; Robertson, D.; University of Derby; University of Sheffield; Rolls-Royce Plc (Elsevier, 2018-11-03)
      The Small Modular Reactor (SMR) concept is designed such that it will solve some of the construction problems of large reactors. SMRs are designed to be “shop fabricated and then transported as modules to the sites for installation” (IAEA, 2018). As a consequence they theoretically have shorter build schedules and require less capital investment (Locatelli et al., 2014). Factory built modules can also increase safety and productivity, due to higher quality tools and inspection available. A literature review has highlighted substantial work has been undertaken in the research, development and construction of different types of reactors and reactor modules but the design of balance of plant modules has not been extensively researched (Wrigley et al., 2018). The focus of this paper is a case study for balance of plant modules in a light water reactor which also could have applications to other reactor types. Modules that are designed for factory build and transport may be built in a standardized module approach. By maximizing module size for transport, this maximizes work offsite, to achieve the cost and schedule savings associated. A design method needs to be developed to help support this approach. To enable this, a three step method is proposed: group components into modules, layout the modules and arrange components inside the modules. The Shearon Harris nuclear power plant was chosen for its publically available data. A previous study on this plant used matrix reordering techniques to group components and heuristically assign them to large modules, built for construction in an assembly area on site, highlighting a potential capital cost savings of 15%. This paper utilizes the same allocation of components to modules as the previous study but aims to undertake the challenge of how balance of plant modules should be arranged. The literature review highlighted that although the facility and plant layout problem has been extensively researched, mathematical layout optimization has not been applied to nuclear power plants. Many techniques for layout optimization have been developed for facilities and process plants however. The work in this paper develops an optimization model using a genetic algorithm for module layout and allocation within a nuclear power plant. This paper analysed two configurations of modules, where balance of plant modules are located on either one or two sides of the nuclear island. The objective function was to minimise pipe length. In the original research, where the plant was configured for assembly on site, the balance of plant modules are located around three sides of the nuclear island. The objective function was calculated at 14,914. As the distances are calculated rectilinearly, this number would be higher in reality as pipework has to be routed around containment. The optimization reduced the objective function by 33.9% and 37.8% for the three and four floor layouts respectively when balance of plant modules are located on two sides of the nuclear island. Furthermore, when modules are located on one side of the nuclear island, the objective function was reduced by 45.4% and 46.1% for three and four floor layouts respectively. This will reduce materials used, reduce build time and hence reduce the cost of a nuclear power plant. This method will also save design time when developing the layout of modules around the plant.
    • Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants.

      Wrigley, P.A.; Wood, P.; Stewart, Paul; Robertson, D.; University of Derby; University of Sheffield; Rolls-Royce Plc (Elsevier, 2018-11-03)
      The Small Modular Reactor (SMR) concept is designed such that it will solve some of the construction problems of large reactors. SMRs are designed to be “shop fabricated and then transported as modules to the sites for installation” (IAEA, 2018). As a consequence they theoretically have shorter build schedules and require less capitalinvestment(Locatelli etal.,2014).Factory builtmodulescanalsoincreasesafetyandproductivity, dueto higher quality tools and inspection available. A literature review has highlighted substantial work has been undertaken in the research, development and construction of different types of reactors and reactor modules but the design of balance of plant modules has not been extensively researched (Wrigley et al., 2018). The focus of this paperis a casestudy for balanceofplant modulesin alightwaterreactorwhich alsocould haveapplications to other reactor types. Modules thataredesignedfor factorybuildandtransport maybebuiltinastandardized moduleapproach.By maximizing module size for transport, this maximizes work offsite, to achieve the cost and schedule savings associated. A design method needs to be developed to help support this approach. To enable this, a three step method is proposed: group components into modules, layout the modules and arrange components inside the modules. The Shearon Harris nuclear power plant was chosen for its publically available data. A previous study on this plant used matrix reordering techniques to group components and heuristically assign them to large modules, built for construction in an assembly area on site, highlighting a potential capital cost savings of 15%. This paper utilizes the same allocation of components to modules as the previous study but aims to undertake the challenge of how balance of plant modules should be arranged. The literature review highlighted that although the facility and plant layout problem has been extensively researched, mathematical layout optimization has not been applied to nuclear power plants. Many techniques for layout optimization have been developed for facilities and process plants however. The work in this paper develops an optimization model using a genetic algorithm for module layout and allocation within a nuclear power plant. This paper analysed two configurations of modules, where balance of plant modules are located on either one or two sides of the nuclear island. The objective function was to minimise pipe length. In the original research, where the plant was configured for assembly on site, the balance of plant modules are located around three sides of the nuclear island. The objective function was calculated at 14,914. As the distances are calculated rectilinearly, this number would be higher in reality as pipework has to be routed around containment. The optimization reduced the objective function by 33.9% and 37.8% for the three and four floor layouts respectively when balance of plant modules are located on two sides of the nuclear island. Furthermore, when modules are located on one side of the nuclear island, the objective function was reduced by 45.4% and 46.1% for three and four floor layouts respectively. This will reduce materials used, reduce build time and hence reduce the cost of a nuclear power plant. This method will also save design time when developing the layout of modules around the plant.
    • Preference-based evolutionary algorithm for airport surface operations.

      Weiszer, Michal; Chen, Jun; Stewart, Paul; Zhang, Xuejun; Queen Mary University of London; University of Derby; Beihang University; National Key Laboratory of CNS/ATM (Elsevier, 2018-04-21)
      In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach.
    • Simplified and accurate stiffness of a prismatic anisotropic thin-walled box.

      Canale, Giacomo; Rubino, Felice; Weaver, Paul M.; Citarella, Roberto; Maligno, Angelo; Rolls-Royce Plc; University of Salerno; University of Bristol; University of Derby (Bentham Open, 2018-02-14)
      Background: Beam models have been proven effective in the preliminary analysis and design of aerospace structures. Accurate cross sectional stiffness constants are however needed, especially when dealing with bending, torsion and bend-twist coupling deformations. Several models have been proposed in the literature, even recently, but a lack of precision may be found when dealing with a high level of anisotropy and different lay-ups. Objective: A simplified analytical model is proposed to evaluate bending and torsional stiffness of a prismatic, anisotropic, thin-walled box. The proposed model is an extension of the model proposed by Lemanski and Weaver for the evaluation of the bend-twist coupling constant. Methods: Bending and torsional stiffness are derived analytically by using physical reasoning and by applying bending and torsional stiffness mathematic definition. Unitary deformations have been applied when evaluation forces and moments arising on the cross section. Results: Good accuracy has been obtained for structures with different geometries and lay-ups. The model has been validated with respect to finite element analysis. Numerical results are commented upon and compared with other models presented in literature. Conclusion: For cross sections with a high level of anisotropy, the accuracy of the proposed formulation is within 2% for bending stiffness and 6% for torsional stiffness. The percentage of error is further reduced for more realistic geometries and lay-ups. The proposed formulation gives accurate results for different dimensions and length rations of horizontal and vertical walls.
    • Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.

      Gzyl, Michal; Rosochowski, Andrzej; Pesci, Raphael; Olejnik, Lech; Yakushina, Evgenia; Wood, Paul; University of Strathclyde; ENSAM-Arts et Métiers ParisTech; Warsaw University of Technology (Springer, 2013-11-07)
      Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension– compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarsegrained samples have also been studied.