Name:
Bagdasar-Popovici-REVISED-20-J ...
Size:
210.3Kb
Format:
PDF
Description:
Accepted Manuscript
Abstract
This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions.Citation
Bagdasar, O. & Popovici, (2015) 'Local maximum points of explicitly quasiconvex functions' Optimization Letters, 9: 769. doi:10.1007/s11590-014-0781-3Publisher
SpringerJournal
Optimization LettersDOI
10.1007/s11590-014-0781-3Additional Links
http://link.springer.com/10.1007/s11590-014-0781-3Type
ArticleLanguage
enISSN
1862-4472EISSN
1862-4480ae974a485f413a2113503eed53cd6c53
10.1007/s11590-014-0781-3
Scopus Count
Collections
The following license files are associated with this item: