• Estimating food production in an urban landscape

      Grafius, Darren R.; Edmondson, Jill L.; Norton, Briony A.; Clark, Rachel; Mears, Meghann; Leake, Jonathan R.; Corstanje, Ron; Harris, Jim A.; Warren, Philip H.; University of Sheffield; et al. (Springer Science and Business Media LLC, 2020-03-20)
      There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land.
    • The evolution of pair-living, sexual monogamy, and cooperative infant care: Insights from research on wild owl monkeys, titis, sakis, and tamarins

      Fernandez-Duque, Eduardo; Huck, Maren; Van Belle, Sarie; Di Fiore, Anthony; University of Derby; Yale University; University of Austin, Texas (Wiley, 2020-03-19)
      “Monogamy” and pair bonding have long been of interest to anthropologists and primatologists. Their study contributes to our knowledge of human evolutionary biology and social evolution without the cultural trappings associated with studying human societies directly. Here, we first provide an overview of theoretical considerations, followed by an evaluation of recent comparative studies of the evolution of “social monogamy”; we are left with serious doubts about the conclusions of these studies that stem from the often poor quality of the data used and an overreliance on secondary sources without vetting the data therein. We then describe our field research program on four “monogamous” platyrrhines (owl monkeys, titis, sakis, and tamarins), evaluate how well our data support various hypotheses proposed to explain “monogamy,” and compare our data to those reported on the same genera in comparative studies. Overall, we found a distressing lack of agreement between the data used in comparative studies and data from the literature for the taxa that we work with. In the final section, we propose areas of research that deserve more attention. We stress the need for more high‐quality natural history data, and we urge researchers to be cautious about the uncritical use of variables of uncertain internal validity. Overall, it is imperative that biological anthropologists establish and follow clear criteria for comparing and combining results from published studies and that researchers, reviewers, and editors alike comply with these standards to improve the transparency, reproducibility, and interpretability of causal inferences made in comparative studies.
    • Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis)

      Brys, Rein; Halfmaerten, David; Neyrinck, Sabrina; Mauvisseau, Quentin; Auwerx, Johan; Sweet, Michael; Mergeay, Joachim; Research Institute for Nature and Forest, Geraardsbergen, Belgium; University of Derby; SureScreen Scientifics Ltd (Wiley, 2020-03-10)
      The European weather loach (Misgurnus fossilis) is a cryptic and poorly known fish species of high conservation concern. The species is experiencing dramatic population collapses across its native range to the point of regional extinction. Although environmental DNA (eDNA)‐based approaches offer clear advantages over conventional field methods for monitoring rare and endangered species, accurate detection and quantification remain difficult and quality assessment is often poorly incorporated. In this study, we developed and validated a novel digital droplet PCR (ddPCR) eDNA‐based method for reliable detection and quantification, which allows accurate monitoring of M. fossilis across a number of habitat types. A dilution experiment under laboratory conditions allowed the definition of the limit of detection (LOD) and the limit of quantification (LOQ), which were set at concentrations of 0.07 and 0.14 copies μl–1, respectively. A series of aquarium experiments revealed a significant and positive relationship between the number of individuals and the eDNA concentration measured. During a 3 year survey (2017–2019), we assessed 96 locations for the presence of M. fossilis in Flanders (Belgium). eDNA analyses on these samples highlighted 45% positive detections of the species. On the basis of the eDNA concentration per litre of water, only 12 sites appeared to harbour relatively dense populations. The other 31 sites gave a relatively weak positive signal that was typically situated below the LOQ. Combining sample‐specific estimates of effective DNA quantity (Qe) and conventional field sampling, we concluded that each of these weak positive sites still likely harboured the species and therefore they do not represent false positives. Further, only seven of the classified negative samples warrant additional sampling as our analyses identified a substantial risk of false‐negative detections (i.e., type II errors) at these locations. Finally, we illustrated that ddPCR outcompetes conventional qPCR analyses, especially when target DNA concentrations are critically low, which could be attributed to a reduced sensitivity of ddPCR to inhibition effects, higher sample concentrations being accommodated and higher sensitivity obtained.
    • Minimum drift times infer trajectories of ghost nets found in the Maldives

      Stelfox, Martin; Lett, Christophe; Reid, Geraldine; Souch, Graham; Sweet, Michael; University of Derby; Olive Ridley Project, Bramhall, Stockport, Cheshire; MARBEC, IRD, Ifremer, Univ Montpellier, CNRS, Sète, France; National Museums Liverpool (Elsevier BV, 2020-03-07)
      This study explores methods to estimate minimum drift times of ghost nets found in the Maldives with the aim of identifying a putative origin. We highlight that percentage cover of biofouling organisms and capitulum length of Lepas anatifera are two methods that provide these estimates. Eight ghost nets were collected in the Maldives and estimated drift times ranged between 7.5 and 101 days. Additionally, Lagrangian simulations identified drift trajectories of 326 historical ghost nets records. Purse seine fisheries (associated with Korea, Mauritius, the Philippines, Spain, France and Seychelles) and gill nets from Sri Lanka were identified as 'high risk' fisheries with regard to likley origins of ghost nets drifting into the Maldives. These fisheries are active in areas where dense particle clusters occured (drift trajectories between 30 and 120 days). Interestingly, ghost nets drifting less than 30 days however, remained inside the exclusive economic zone of the Maldivian archipelago highlighting potential illegal, unreported and unregulated fishing activity is occuring in this area. This study therefore points to the urgent need for gear loss reporting to be undertaken, especially by purse seine and gill net fisheries in order to ascertain the source of this major threat to marine life. This should also be coupled with an improvment in the data focused on spatial distribution of the abandoned, lost or discarded fishing gear originating from both large- and small-scale fisheries.
    • Green roof and ground-level invertebrate communities are similar and are driven by building height and landscape context

      Dromgold, Jacinda R; Threlfall, Caragh G; Norton, Briony, A.; Williams, Nicholas S G; University of Melbourne, Melbourne, Australia; University of Derby (Oxford University Press (OUP), 2020-01-30)
      Green roofs are increasingly promoted for urban biodiversity conservation, but the value of these novel habitats is uncertain. We aimed to test two hypotheses: (i) green roofs can support comparable invertebrate family and order richness, composition and abundances to ground-level habitats and (ii) green roofs planted with native species from local habitats will support a richer invertebrate community at family and order level than other green roofs. We sampled the invertebrate community on green roofs dominated by native grassland or introduced succulent species in Melbourne, Australia, and compared these to the invertebrate community in ground-level sites close by, and sites with similar vegetation types. The only significant differences between the invertebrate communities sampled on green roofs and ground-level habitats were total abundance and fly family richness, which were higher in ground-level habitats. Second hypothesis was not supported as invertebrate communities on green roofs supporting a local vegetation community and those planted with introduced Sedum and other succulents were not detectably different at family level. The per cent cover of green space surrounding each site was consistently important in predicting the richness and abundance of the invertebrate families we focussed on, while roof height, site age and size were influential for some taxa. Our results suggest that invertebrate communities of green roofs in Melbourne are driven largely by their surrounding environment and consequently the effectiveness of green roofs as invertebrate habitat is highly dependent on location and their horizontal and vertical connection to other habitats.
    • Of apples and oranges? The evolution of “monogamy” in non-human primates

      Huck, Maren; Di Fore, Anthony; Fernandez-Duque, Eduardo; University of Derby, Environmental Sustainability Research Centre; University of Texas at Austin; Yale University (Frontiers, 2020-01-10)
      Behavioral ecologists, evolutionary biologists, and anthropologists have been long fascinated by the existence of “monogamy” in the animal kingdom. Multiple studies have explored the factors underlying its evolution and maintenance, sometimes with contradicting and contentious conclusions. These studies have been plagued by a persistent use of fuzzy terminology that often leads to researchers comparing “apples with oranges” (e.g., comparing a grouping pattern or social organization with a sexual or genetic mating system). In this review, we provide an overview of research on “monogamy” in mammals generally and primates in particular, and we discuss a number of problems that complicate comparative attempts to understand this issue. We first highlight why the muddled terminology has hindered our understanding of both a rare social organization and a rare mating system. Then, following a short overview of the main hypotheses explaining the evolution of pair-living and sexualmonogamy, we critically discuss various claims about the principal drivers of “monogamy” that have been made in several recent comparative studies.We stress the importance of using only high quality and comparable data. We then propose that a productive way to frame and dissect the different components of pair-living and sexual or genetic monogamy is by considering the behavioral and evolutionary implications of those components from the perspectives of all participants in a species’ social system. In particular, we highlight the importance of integrating the perspective of “floater” individuals and considering their impacts on local operational sex ratios, competition, and variance in reproductive success across a population. We stress that pair-living need not imply a reduced importance of intrasexual mate competition, a situation that may have implications for the sexual selection potential that have not yet been fully explored. Finally, we note that there is no reason to assume that different taxa and lineages, even within the same radiation, should follow the same pathway to or share a unifying evolutionary explanation for “monogamy”. The study of the evolution of pair-living, sexual monogamy, and genetic monogamy remains a challenging and exciting area of research.
    • Substrate parameters affecting propagation of juvenile freshwater pearl mussels margaritifera margaritifera (bivalvia: margaritiferidae)

      Lavictoire, Louise; Notman, Gill; Pentecost, Allan; Moorkens, Evelyn; Ramsey, Andrew; Sweeting, Roger A.; University of Derby (Conchological Society, 2020)
      Interstitial habitat conditions are of critical importance to species inhabiting the hyporheic zone, particularly for moderately immobile species incapable of escaping poor habitat conditions. The critically endangered freshwater pearl mussel (Margaritifera margaritifera Linnaeus, 1758) has seen increasing propagation effort over the last three decades, often with mixed success. This study aimed to investigate parameters with the potential to affect juvenile survival in captivity by considering a range of habitat conditions within the substrate of a previously described propagation system using different substrate size classes (0.25–1 and 1–2mm) and cleaning regimes (weekly and monthly). Juvenile survival was highest in larger substrates, likely because of higher flow through larger pore spaces. This provided higher dissolved oxygen delivery in 1–2mm substrates cleaned weekly (8.26 ± 0.19 mg/L) and monthly (8.24 ± 0.44 mg/L), compared with 0.25–1mm substrates cleaned weekly (7.98 ± 0.44 mg/L) and monthly (6.78 ± 1.27 mg/L). The amount of organic material trapped in the substrate did not differ between treatments but the high concentrations of inorganic phosphorus liberated from ashed organic matter indicated phosphorus storage in phytoplankton. High dissolved oxygen concentrations and good water replacement between the water column and the substrate are crucial for survival in captive freshwater pearl mussels.
    • Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations

      Stelfox, M; Bulling, M; Sweet, M; University of Derby; Olive Ridley Project, Cheshire (Inter-Research Science Center, 2019-12-12)
      There is little documentation available on the impact of abandoned, lost or discarded fishing nets (‘ghost nets’) on turtle populations. Here, we utilise data collected over a 5 year period to assess (1) if a particular net type or characteristic was identifiable as entangling more turtles and (2) if particular fishing practices (i.e. types of nets) could be managed to reduce turtle entanglement in the Maldivian archipelago. A total of 131 turtles were entangled in the 752 reported ghost nets, and olive ridley turtles Lepidochelys olivacea appeared to be the most vulnerable (making up 97% of entangled turtles). However, we estimate that the 752 nets in this study, reported over a 51 month period, could have entangled between 3400 and 12200 turtles across the Indian Ocean prior to being detected in the Maldives. Mesh size, seasonality (i.e. north east monsoon), and the presence of floats were all identified as variables significantly affecting the likelihood of turtle entanglement. The probability of entanglement increased as the mesh size increased but decreased when floats were present. Additionally, turtles were more likely to be entangled during the north east monsoon when currents flow from east to west. Cluster analysis indicated that there were at least 11 broadly assigned net types found floating in the study area, and these were dominated by trawl and gill nets. Our analyses highlight the need for a detailed database of existing gear types coupled with gear marking to improve traceability of ghost nets in the Indian Ocean.
    • Rain-fed granite rock basins accumulate a high diversity of dormant microbial eukaryotes

      Velasco-González, Ismael; Sanchez-Jimenez, Abel; Singer, David; Murciano, Antonio; Díez-Hermano, Sergio; Lara, Enrique; Martín-Cereceda, Mercedes; Departamento de Genética, Fisiología y Microbiología. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), C/ José Antonio Novais 12, 28040, Madrid, Spain; Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias Biológicas, UCM, Madrid, Spain; University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland; et al. (Springer Science and Business Media LLC, 2019-12-03)
      Rain fed granite rock basins are ancient geological landforms of worldwide distribution and structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along the year. Diversity of animals and plants, and the connexion between communities in different basins have been widely explored in these habitats, but hardly any research has been carried out on microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic microbial communities from these environments. Due to the ephemeral nature of these aquatic environments, we predict that the granitic basins should host a high proportion of dormant microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse communities with representatives of all major eukaryotic taxonomic supergroups, mainly composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. Dissimilarity between basins was mainly characterised by turnover of OTUs. The strong microbial eukaryotic heterogeneity observed among the basins may be explained by a complex combination of deterministic factors (diverging environment in the basins), spatial constraints, and randomness including founder effects. Most interestingly, communities contain organisms that cannot coexist at the same time because of incompatible metabolic requirements, thus suggesting the existence of a pool of dormant organisms whose activity varies along with the changing environment. These organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial islands whose conservation and study deserve further attention.
    • Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease

      Sweet, Michael; Burian, Alfred; Fifer, James; Bulling, Mark; Elliott, David; Raymundo, Laurie; University of Derby; University of Guam (Springer Science and Business Media LLC, 2019-11-22)
      Coral reefs face unprecedented declines in diversity and cover, a development largely attributed to climate change-induced bleaching and subsequent disease outbreaks. Coral-associated microbiomes may strongly influence the fitness of their hosts and alter heat tolerance and disease susceptibility of coral colonies. Here, we describe a new coral disease found in Micronesia and present a detailed assessment of infection-driven changes in the coral microbiome. Combining field monitoring and histological, microscopic and next-generation barcoding assessments, we demonstrate that the outbreak of the disease, named ‘grey-patch disease’, is associated with the establishment of cyanobacterial biofilm overgrowing coral tissue. The disease is characterised by slow progression rates, with coral tissue sometimes growing back over the GPD biofilm. Network analysis of the corals’ microbiome highlighted the clustering of specific microbes which appeared to benefit from the onset of disease, resulting in the formation of ‘infection clusters’ in the microbiomes of apparently healthy corals. Our results appear to be in contrast to the recently proposed Anna-Karenina principle, which states that disturbances (such as disease) trigger chaotic dynamics in microbial communities and increase β-diversity. Here, we show significantly higher community similarity (compositional homogeneity) in the pathobiome of diseased corals, compared to the microbiome associated with apparently healthy tissue. A possible explanation for this pattern is strong competition between the pathogenic community and those associated with the ‘healthy’ coral holobiont, homogenising the composition of the pathobiome. Further, one of our key findings is that multiple agents appear to be involved in degrading the corals’ defences causing the onset of this disease. This supports recent findings indicating a need for a shift from the one-pathogen-one-disease paradigm to exploring the importance of multiple pathogenic players in any given disease.
    • Sexual dimorphism in the loud calls of Azara’s owl monkeys (Aotus azarae): evidence of sexual selection?

      Garcia de la Chica, Alba; Huck, Maren; Depeine, Catherine; Rotundo, Marcelo; Adret, Patrice; Fernandez-Duque, Eduardo; University of Derby (Springer Science and Business Media LLC, 2019-11-15)
      Primates use different types of vocalizations in a variety of contexts. Some of the most studied types have been the long distance or loud calls. These vocalizations have been associated with mate defense, mate attraction, and resource defense, and it is plausible that sexual selection has played an important role in their evolution. Focusing on identified individuals of known sex and age, we evaluated the sexual dimorphism in a type of loud calls (hoots) in a population of wild owl monkeys (Aotus azarae) in Argentina. We found evidence of sexual dimorphism in call structure, with females and males only emitting one type of call, each differing in dominant frequency and Shannon entropy. In addition, both age-related and sex-specific differences in call usage were also apparent in response to the removal of one group member. Future acoustic data will allow us to assess if there are individual characteristics and if the structure of hoot calls presents differences in relation to the social condition of owl monkeys or specific sex responses to variants of hoot calls’ traits. This will provide deeper insights into the evolution of vocal mechanisms regulating pair bonding and mate choice strategies in this and other primate species.
    • Customized medicine for corals

      Sweet, Michael; Peixoto, Raquel; Bourne, David; University of Derby; Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; IMAM-AquaRio – Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil; University of California; James Cook University, Townsville, QLD, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia (Frontiers, 2019-11-13)
    • Elemental ratios link environmental change and human health

      Paseka, Rachel E.; Bratt, Anika R.; MacNeill, Keeley L.; Burian, Alfred; See, Craig R.; University of Derby (Frontiers, 2019-10-10)
      Humans have fundamentally altered the cycling of multiple elements on a global scale. These changes impact the structure and function of terrestrial and aquatic ecosystems, with many implications for human health. Most prior studies linking biogeochemical changes to human health have evaluated the effects of single elements in isolation. However, the relative availability of multiple elements often determines the biological impact of shifts in the concentration of a single element. The balance of multiple elements is the focus of ecological stoichiometry, which highlights the importance of elemental ratios in biological function across all systems and scales of organization. Consequently, ecological stoichiometry is a promising framework to inform research on the links between global changes to elemental cycles and human health. We synthesize evidence that elemental ratios link global change with human health through biological processes occurring at two scales: in the environment (natural ecosystems and food systems) and within the human body. Elemental ratios in the environment impact the key ecosystem processes of productivity and biodiversity, both of which contribute to the production of food, toxins, allergens, and parasites. Elemental ratios in diet impact processes within the human body, including the function and interactions of the immune system, parasites, and the non-pathogenic microbiome. Collectively, these stoichiometric effects contribute to a wide range of non-infectious and infectious diseases. By describing stoichiometric mechanisms linking global change, ecological processes, and human health, we hope to inspire future empirical and theoretical research on this theme.
    • Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate

      Mauvisseau, Quentin; Davy-Bowker, John; Bulling, Mark; Brys, Rein; Neyrinck, Sabrina; Troth, Christopher; Sweet, Michael; University of Derby; Freshwater Biological Association, Dorset; Natural History Museum, London; et al. (Springer Science and Business Media LLC, 2019-10-01)
      Isogenus nubecula is a critically endangered Plecoptera species. Considered extinct in the UK, I. nubecula was recently rediscovered (in one location of the River Dee, Wales), after 22 years of absence. In a similar way to many other species of Perlodidae, I. nubecula could be utilised as a bio-indicator, for assessing water quality and health status of a given freshwater system. However, conventional monitoring of invertebrates via kick-sampling, is invasive and expensive (time consuming). Further, such methods require a high level of taxonomic expertise. Here, we compared the traditional kick-sampling method with the use of eDNA detection using qPCR and ddPCR-analyses. In spring 2018, we sampled eDNA from twelve locations on the River Dee. I. nubecula was detected using kick-sampling in five of these locations, three locations using both eDNA detection and kick-sampling and one location using eDNA detection alone – resulting in a total of six known and distinct populations of this critically endangered species. Interestingly, despite the eDNA assay being validated in vitro and in silico, and results indicating high sensitivity, qPCR analysis of the eDNA samples proved to be ineffective. In contrast, ddPCR analyses resulted in a clear detection of I. nubecula at four locations suggesting that inhibition most likely explains the large discrepancy between the obtained qPCR and ddPCR results. It is therefore important to explore inhibition effects on any new eDNA assay. We also highlight that ddPCR may well be the best option for the detection of aquatic organisms which are either rare or likely to shed low levels of eDNA into their environment.
    • Growth rate, extinction and survival amongst late Cenozoic bivalves of the North Atlantic

      Johnson, Andrew L. A.; Harper, Elizabeth M.; Clarke, Abigail; Featherstone, Aaron C.; Heywood, Daniel J.; Richardson, Kathryn E.; Spink, Jack O.; Thornton, Luke A.H.; University of Derby (Taylor & Francis, 2019-09-12)
      Late Cenozoic bivalve extinction in the North Atlantic and adjacent areas has been attributed to environmental change (declines in temperature and primary production). Within scallops and oysters—bivalve groups with a high growth rate—certain taxa which grew exceptionally fast became extinct, while others which grew slower survived. The taxa which grew exceptionally fast would have obtained protection from predators thereby, so their extinction may have been due to the detrimental effect of environmental change on growth rate and ability to avoid predation, rather than environmental change per se. We investigated some glycymeridid and carditid bivalves—groups with a much lower growth rate than scallops and oysters—to see whether extinct forms from the late Cenozoic of the North Atlantic grew faster than extant forms, and hence whether their extinction may also have been mediated by increased mortality due to predation. Growth rate was determined from the cumulative width of annual increments in the hinge area; measurements were scaled up to overall shell size for the purposes of comparison with data from living species. Growth of the extinct glycymeridid Glycymeris subovata was at about the same rate as the slowest-growing living glycymeridid and much slower than in late Cenozoic samples of extant G. americana, in which growth was at about the same rate as the fastest-growing living glycymeridid. Growth of extinct G. obovata was also slower than G. americana, and that of the extinct carditid Cardites squamulosa ampla similarly slow (evidently slower than in the one living carditid species for which data are available). These findings indicate that within bivalve groups whose growth is much slower than scallops and oysters, extinction or survival of taxa through the late Cenozoic was not influenced by whether they were relatively fast or slow growers. By implication, environmental change acted directly to cause extinctions in slow-growing groups, rather than by increasing susceptibility to predation.
    • Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship

      Craggs, Jamie; Guest, James; Bulling, Mark; Sweet, Michael; University of Derby; Newcastle University (Springer Science and Business Media LLC, 2019-09-10)
      Reef restoration efforts, utilising sexual coral propagation need up-scaling to have ecologically meaningful impact. Post-settlement survival bottlenecks, in part due to competitive benthic algae interactions should be addressed, to improve productivity for these initiatives. Sea urchins are keystone grazers in reef ecosystems, yet feeding behaviour of adults causes physical damage and mortality to developing coral spat. To investigate if microherbivory can be utilised for co-culture, we quantitatively assessed how varying densities of juvenile sea urchins Mespilia globulus (Linnaeus, 1758), reared alongside the coral Acropora millepora (Ehrenberg, 1834) effected survival and growth of coral recruits. Spawning of both species were induced ex situ. A comparison of A. millepora spat reared in three M. globulus densities (low 16.67 m−2, medium 37.50 m−2, high 75.00 m−2) and a non-grazed control indicated coral survival is significantly influenced by grazing activity (p < 0.001) and was highest in the highest density treatment (39.65 ± 10.88%, mean ± s.d). Urchin grazing also significantly (p < 0.001) influenced coral size (compared to non-grazing control), with colonies in the medium and high-densities growing the largest (21.13 ± 1.02 mm & 20.80 ± 0.82, mean ± s.e.m). Increased urchin density did however have a negative influence on urchin growth, a result of limited food availability.
    • Lower crustal heterogeneity and fractional crystallisation control evolution of small volume magma batches at ocean island volcanoes (Ascension Island, South Atlantic)

      Chamberlain, Katy J.; Barclay, Jenni; Preece, Katie; Brown, Richard J.; Davidson, Jon P.; Durham University; University of Derby; University of East Anglia; Swansea University (Oxford University Press, 2019-08-10)
      Ocean island volcanoes erupt a wide range of magmatic compositions via a diverse range of eruptive styles. Understanding where and how these melts evolve is thus an essential component in the anticipation of future volcanic activity. Here we examine the role of crustal structure and magmatic flux in controlling the location, evolution and ultimately composition of melts at Ascension Island. Ascension Island, in the south Atlantic, is an ocean island volcano which has produced a continuum of eruptive compositions from basalt to rhyolite in its 1-million-year subaerial eruptive history. Volcanic rocks broadly follow a silica undersaturated subalkaline evolutionary trend and new data presented here show a continuous compositional trend from basalt through trachyte to rhyolite. Detailed petrographic observations are combined with in-situ geochemical analyses of crystals and glass, and new whole rock major and trace element data from mafic and felsic pyroclastic and effusive deposits that span the entire range in eruptive ages and compositions found on Ascension Island. These data show that extensive fractional crystallisation is the main driver for the production of felsic melt for Ascension Island; a volcano built on thin, young, oceanic crust. Strong spatial variations in the compositions of erupted magmas reveals the role of a heterogeneous lower crust: differing degrees of interaction with a zone of plutonic rocks are responsible for the range in mafic lava composition, and for the formation of the central and eastern felsic complexes. A central core of nested small-scale plutonic, or mush-like, bodies inhibits the ascent of mafic magmas, allowing sequential fractional crystallisation within the lower crust, and generating felsic magmas in the core of the island. There is no evidence for magma mixing preserved in any of the studied eruptions, suggesting that magma storage regions are transient, and material is not recycled between eruptions.
    • Slow on the draw: the representation of turtles, terrapins and tortoises in children’s literature

      Beaumont, Ellen S.; Briers, Erin; Harrison, Emma; University of Derby; The Orkney Campus of Heriot-Watt University, Stromness (Springer, 2019-08-08)
      Children’s picture books, both fiction and non-fiction, play a vital role in introducing the reader to the natural world. Here we examine the representation of turtles, terrapins and tortoises (Testudines) in 204 English language picture books and find a mean of 3.9 (SD 9.1) basic biological errors per book. Only 83 (40.7%) of the examined books were found to be error-free in the representation of Testudines, with no significant improvement in biological accuracy being observed over time (book publication date range 1974–2017). Suggestions are made as to how biological accuracy of children’s literature could be improved to help foster children’s understanding and wonder of the natural world. Fantasy and imagination have an important role within children’s literature, but here it is argued that the books children read should support future generations having sufficient understanding of the natural world to imagine the solutions to current environmental problems. A role of children’s picture books should not be to reinforce biological illiteracy.
    • Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity

      Norton, Briony, A.; Bending, Gary, D.; Clark, Rachel; Corstanje, Ron; Dunnett, Nigel; Evans, Karl, L.; Grafius, Darren, R.; Gravestock, Emily; Grice, Samuel, M.; Harris, Jim, A.; et al. (Ecological Society of America, 2019-07-22)
      There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.
    • A review of Pangaea dispersal and large igneous provinces – In search of a causative mechanism

      Peace, A.L.; Phethean, Jordan; Franke, D.; Foulger, G.R.; Schiffer, C.; Welford, J.K.; McHone, G.; Rocchi, S.; Schnabel, M.; Doré, A.G.; et al. (Elsevier, 2019-07-22)
      The breakup of Pangaea was accompanied by extensive, episodic, magmatic activity. Several Large Igneous Provinces (LIPs) formed, such as the Central Atlantic Magmatic Province (CAMP) and the North Atlantic Igneous Province (NAIP). Here, we review the chronology of Pangaea breakup and related large-scale magmatism. We review the Triassic formation of the Central Atlantic Ocean, the breakup between East and West Gondwana in the Middle Jurassic, the Early Cretaceous opening of the South Atlantic, the Cretaceous separation of India from Antarctica, and finally the formation of the North Atlantic in the Mesozoic-Cenozoic. We demonstrate that throughout the dispersal of Pangaea, major volcanism typically occurs distal from the locus of rift initiation and initial oceanic crust accretion. There is no location where extension propagates away from a newly formed LIP. Instead, LIPs are coincident with major lithosphere-scale shear movements, aborted rifts and splinters of continental crust rifted far out into the oceanic domain. These observations suggest that a fundamental reappraisal of the causes and consequences of breakup-related LIPs is in order.