• A cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for association with CDK–cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is not required for differentiation-dependent viral genome amplification or L1 capsid protein expression

      Knight, Gillian L.; Pugh, Alice G.; Yates, Emma; Bell, Ian; Wilson, Regina; Moody, Cary A.; Laimins, Laimonis A.; Roberts, Sally (2013-03-20)
      The G2/M arrest function of human papillomavirus (HPV) E4 proteins is hypothesized to be necessary for viral genome amplification. Full-length HPV18 E1^E4 protein is essential for efficient viral genome amplification. Here we identify key determinants within a CDK-bipartite consensus recognition motif in HPV18 E1^E4 that are critical for association with active CDK–cyclin complexes and in vitro phosphorylation at the predicted CDK phosphorylation site (threonine 23). The optimal cyclin-binding sequence (43RRLL46) within this E4 motif is required for G2/M arrest of primary keratinocytes and correlates with cytoplasmic retention of cyclin B1, but not cyclin A. Disruption of this motif in the E4 ORF of HPV18 genomes, and the subsequent generation of stable cell lines in primary keratinocytes revealed that this motif was not essential for viral genome amplification or L1 capsid protein induction. We conclude that the HPV18 E4 G2/M arrest function does not play a role in early vegetative events.
    • Identification of an arginine-rich motif in human papillomavirus type 1 E1^E4 protein necessary for E4-mediated inhibition of cellular DNA Synthesis In Vitro and in Cells

      Roberts, Sally; Kingsbury, S. R.; Stoeber, K.; Knight, Gillian L.; Gallimore, P. H.; Williams, Gareth H. (2013-03-20)
      Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E4 in cells is known to activate cell cycle checkpoints, inhibiting G2-to-M transition of the cell cycle and also suppressing entry of cells into S phase. We report here that the HPV1 E4 protein, in the presence of a soluble form of the replicationlicensing factor (RLF) Cdc6, inhibits initiation of cellular DNA replication in a mammalian cell-free DNA replication system. Chromatin-binding studies show that E4 blocks replication initiation in vitro by preventing loading of the RLFs Mcm2 and Mcm7 onto chromatin. HPV1 E4-mediated replication inhibition in vitro and suppression of entry of HPV1 E4-expressing cells into S phase are both abrogated upon alanine replacement of arginine 45 in the full-length E4 protein (E1^E4), implying that these two HPV1 E4 functions are linked. We hypothesize that HPV1 E4 inhibits competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by suppressing licensing of cellular replication origins, thus modifying the phenotype of the infected cell in favor of viral genome amplification.