• Estimating food production in an urban landscape

      Grafius, Darren R.; Edmondson, Jill L.; Norton, Briony A.; Clark, Rachel; Mears, Meghann; Leake, Jonathan R.; Corstanje, Ron; Harris, Jim A.; Warren, Philip H.; University of Sheffield; et al. (Springer Science and Business Media LLC, 2020-03-20)
      There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land.
    • Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows.

      Hoyle, Helen; Norton, Briony, A.; Dunnett, Nigel; Richards, J. Paul; Russell, Jean M.; Warren, Philip H.; University of Sheffield (Elsevier, 2018-09-01)
      There is increasing evidence of the benefits of introducing urban meadows as an alternative to amenity mown grass in public greenspaces, both for biodiversity, and human wellbeing. Developing a better understanding of the meadow characteristics driving human and wildlife response is therefore critical. We addressed this by assessing public and invertebrate response to eight different annual meadow mixes defined by two levels of plant species diversity and two levels of colour diversity, sown in an urban park in Luton, UK, in April 2015. On-site questionnaires with the visiting public were conducted in July, August and September 2015. Invertebrate responses were assessed via contemporaneous visual surveys and one sweep net survey (August 2015). Flower colour diversity had effects on human aesthetic response and the response of pollinators such as bumblebees and hoverflies. Plant species diversity, however, was not a driver of human response with evidence that people used colour diversity as a cue to assessing species diversity. Plant species diversity did affect some invertebrates, with higher abundances of certain taxa in low species diversity meadows. Our findings indicate that if the priority for sown meadows is to maximise human aesthetic enjoyment and the abundance and diversity of observable invertebrates, particularly pollinators, managers of urban green infrastructure should prioritise high flower colour diversity mixes over those of high plant species diversity. Incorporating late-flowering non-native species such as Coreopsis tinctoria (plains coreopsis) can prolong the attractiveness of the meadows for people and availability of resources for pollinators and would therefore be beneficial.
    • Urban biodiversity and landscape ecology: Patterns, processes and planning

      Norton, Briony, A.; Evans, Karl L.; Warren, Philip H.; University of Sheffield (Springer, 2016-11-21)
      Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world.
    • Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity.

      Corstanje, Ron; Warren, Philip H.; Evans, Karl L.; Siriwardena, Gavin M.; Pescott, Oliver L.; Plummer, Kate E.; Mears, Meghann; Zawadzka, Joanna; Richards, J. Paul; Harris, Jim A.; et al. (Elsevier, 2019-05-30)
      The ability to predict spatial variation in biodiversity is a long-standing but elusive objective of landscape ecology. It depends on a detailed understanding of relationships between landscape and patch structure and taxonomic richness, and accurate spatial modelling. Complex heterogeneous environments such as cities pose particular challenges, as well as heightened relevance, given the increasing rate of urbanisation globally. Here we use a GIS-linked Bayesian Belief Network approach to test whether landscape and patch structural characteristics (including vegetation height, green-space patch size and their connectivity) drive measured taxonomic richness of numerous invertebrate, plant, and avian groups. We find that modelled richness is typically higher in larger and better-connected green-spaces with taller vegetation, indicative of more complex vegetation structure and consistent with the principle of ‘bigger, better, and more joined up’. Assessing the relative importance of these variables indicates that vegetation height is the most influential in determining richness for a majority of taxa. There is variation, however, between taxonomic groups in the relationships between richness and landscape structural characteristics, and the sensitivity of these relationships to particular predictors. Consequently, despite some broad commonalities, there will be trade-offs between different taxonomic groups when designing urban landscapes to maximise biodiversity. This research demonstrates the feasibility of using a GIS-coupled Bayesian Belief Network approach to model biodiversity at fine spatial scales in complex landscapes where current data and appropriate modelling approaches are lacking, and our findings have important implications for ecologists, conservationists and planners.