• Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations

      Hardstaff, Joanne L.; Bulling, Mark T.; Marion, Glenn; Hutchings, Michael R.; White, Piran C. L. (2013-05-23)
      Background The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection.
    • Modelling the impact of vaccination on tuberculosis in badgers.

      Hardstaff, Joanne L.; Bulling, Mark T.; Marion, Glenn; Hutchings, Michael R.; White, Piran C. L.; University of York, Environment Department (2013-04-10)
      SUMMARY Tuberculosis (TB) in livestock, caused by Mycobacterium bovis, persists in many countries. In the UK and Ireland, efforts to control TB through culling of badgers (Meles meles), the principal wildlife host, have failed and there is significant interest in vaccination of badgers as an alternative or complementary strategy. Using a simulation model, we show that where TB is self-contained within the badger population and there are no external sources of infection, limited-duration vaccination at a high level of efficacy can reduce or even eradicate TB from the badger population. However, where sources of external infection persist, benefits in TB reduction in badgers can only be achieved by ongoing, annual vaccination. Vaccination is likely to be most effective as part of an integrated disease management strategy incorporating a number of different approaches across the entire host community.