• The PAX8 cistrome in epithelial ovarian cancer.

      Adler, Emily K.; Corona, Rosario I.; Lee, Janet M.; Rodriguez-Malave, Norma; Mhawech-Fauceglia, Paulette; Sowter, Heidi M.; Hazelett, Dennis J.; Lawrenson, Kate; Gayther, Simon A.; University of Southern California; et al. (Impact Journals, 2017-11-28)
      PAX8 is a lineage-restricted transcription factor that is expressed in epithelial ovarian cancer (EOC) precursor tissues, and in the major EOC histotypes. Frequent overexpression of PAX8 in primary EOCs suggests this factor functions as an oncogene during tumorigenesis, however, the biological role of PAX8 in EOC development is poorly understood. We found that stable knockdown of PAX8 in EOC models significantly reduced cell proliferation and anchorage dependent growth in vitro, and attenuated tumorigenicity in vivo. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and transcriptional profiling were used to create genome-wide maps of PAX8 binding and putative target genes. PAX8 binding sites were significantly enriched in promoter regions (p < 0.05) and superenhancers (p < 0.05). MEME-ChIP analysis revealed that PAX8 binding sites overlapping superenhancers or enhancers, but not promoters, were enriched for JUND/B and ARNT/AHR motifs. Integrating PAX8 ChIP-seq and gene expression data identified PAX8 target genes through their associations within shared topological association domains. Across two EOC models we identified 62 direct regulatory targets based on PAX8 binding in promoters and 1,330 putative enhancer regulatory targets. SEPW1, which isinvolved inoxidation-reduction,was identified as a PAX8 target gene in both cell line models. While the PAX8 cistrome exhibits a high degree of cell-type specificity, analyses of PAX8 target genes and putative cofactors identified common molecular targets and partners as candidate therapeutic targets for EOC.
    • Targeting Src in endometriosis-associated ovarian cancer

      Manek, Roxanne; Pakzamir, Elham; Mhawech-Fauceglia, Paulette; Pejovic, Tanja; Sowter, Heidi M.; Gayther, Simon A.; Lawrenson, Kate; University of Southern California; Oregon Health and Science University; University of Derby; et al. (Nature, 2016-08-15)
      The SRC proto-oncogene is commonly overexpressed or activated during cancer development. Src family kinase inhibitors are approved for the treatment of certain leukemias, and are in clinical trials for the treatment of solid tumors. Src signaling is activated in endometriosis, a precursor of clear cell and endometrioid subtypes of epithelial ovarian cancers (OCs). We examined the expression of phosphorylated Src (Src-pY416) in 381 primary OC tissues. Thirty-six percent of OCs expressed Src-pY416. Src-pY416 expression was most common in endometriosis-associated OCs (EAOCs) (P=0.011), particularly in clear cell OCs where 58.5% of cases expressed Src-pY416. Src-pY416 expression was associated with shorter overall survival (log rank P=0.002). In vitro inhibition of Src signaling using 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) resulted in reduced anchorage-independent and -dependent growth, and in three-dimensional cell culture models PP2 disrupted aggregate formation in Src-pY416-positive but not in Src-pY416-negative cell lines. These data suggest that targeting active Src signaling could be a novel therapeutic opportunity for EAOCs, and support the further pre-clinical investigation of Src family kinase inhibitors for treating OCs expressing Src-pY416.