• Micro-analytical perspectives on the Bishop Tuff and its magma chamber.

      Chamberlain, Katy J.; Wilson, Colin J. N.; Wallace, Paul J.; Millet, Marli Bryant; Victoria University of Wellington; Durham University; University of Oregon (Oxford Academic, 2015-04-23)
      New in situ major and trace element analytical data are presented for crystals (sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene) and matrix glasses from juvenile materials representing the full Bishop Tuff sequence from the earliest fall unit (F1) to the latest ignimbrite package (Ig2Nc). These data are combined with published information to investigate the nature and zonation of the pre-eruptive Bishop magma chamber. Our data confirm that this magma chamber was a single unitary body that was thermally and compositionally zoned. The zonation was largely established prior to the growth of crystals, and also prior to mixing in the lower parts of the chamber induced by late-stage intrusion of a magma of contrasting composition and slightly higher temperature (the ‘bright-rim’ magma). Sparse mixed swirly and dacitic pumices show enrichments in Ba, Sr and Ti that identify these pumices as possible representatives of the ‘bright-rim’ magma. A model (revised from previously published work) for the pre-eruptive magma chamber comprises three main parts: (1) an upper, volumetrically dominant (∼2/3), relatively unzoned region that was the source of the earlier, eastern-erupted ignimbrite units and their coeval fall units; (2) a volumetrically minor transition zone that shows evidence for minor degrees of mixing and was the dominant source for the latest, eastern-erupted part of Ig1Eb (Sherwin subunit) and the earlier part of the northern-erupted ignimbrite (Ig 2Na); (3) a lower, volumetrically subordinate (∼1/3) region that was affected by mixing with the ‘bright-rim’ invasive magma in the lead-up to the eruption, and fed later northern-erupted units. Ingress of the ‘bright-rim’ magma introduced orthopyroxene and bright-rimmed zircon crystals, and induced partial resorption then overgrowth of rims enriched in Ti, Sr and Ba on sanidine and quartz, and development of zoning in clinopyroxene. Based on pumice proportions and associated crystal and glass chemistries through the eruptive sequence, we infer that the roof and floor of the magma chamber were stepped down to the north, such that the transition zone magma formed the floor of the southern part of the melt-dominant chamber and the roof of the northern part. Our data reinforce the previous concept of a single compositionally and thermally zoned Bishop magma chamber and additionally support a temporally constrained role for pre-eruptive magma mixing and the introduction of melts and minerals with contrasting compositions to the resident Bishop magma.
    • Origin and evolution of silicic magmas at ocean islands: Perspectives from a zoned fall deposit on Ascension Island, South Atlantic.

      Chamberlain, Katy J.; Barclay, Jenni; Preece, Katie; Brown, Richard J.; Davidson, Jon P.; University of Durham; University of East Anglia (2016-11-15)
      Ascension Island, in the south Atlantic is a composite ocean island volcano with a wide variety of eruptive styles and magmatic compositions evident in its ~ 1 million year subaerial history. In this paper, new observations of a unique zoned fall deposit on the island are presented; the deposit gradationally changes from trachytic pumice at the base, through to trachy-basaltic andesite scoria at the top of the deposit. The key features of the eruptive deposits are described and are coupled with whole rock XRF data, major and trace element analyses of phenocrysts, groundmass glass and melt inclusions from samples of the compositionally-zoned fall deposit to analyse the processes leading up to and driving the explosive eruption. Closed system crystal fractionation is the dominant control on compositional zonation, with the fractionating assemblage dominated by plagioclase feldspar and olivine. This fractionation from the trachy-basaltic andesite magma occurred at pressures of ~ 250 MPa. There is no evidence for multiple stages of evolution involving changing magmatic conditions or the addition of new magmatic pulses preserved within the crystal cargo. Volatile concentrations range from 0.5 to 4.0 wt.% H2O and progressively increase in the more-evolved units, suggesting crystal fractionation concentrated volatiles into the melt phase, eventually causing internal overpressure of the system and eruption of the single compositionally-zoned magma body. Melt inclusion data combined with Fe–Ti oxide modelling suggests that the oxygen fugacity of Ascension Island magmas is not affected by degree of evolution, which concentrates H2O into the liquid phase, and thus the two systems are decoupled on Ascension, similar to that observed in Iceland. This detailed study of the zoned fall deposit on Ascension Island highlights the relatively closed-system evolution of felsic magmas at Ascension Island, in contrast to many other ocean islands, such as Tenerife and Iceland.