Browsing Department of Electronics, Computing & Maths by Title
Now showing items 690-692 of 692
-
Z-boson production in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ = 8.16 TeV and Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ = 5.02 TeVMeasurement of Z-boson production in p-Pb collisions at √sNN = 8.16 TeV and Pb-Pb collisions at √sNN = 5.02 TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity −4 < ημ < −2.5 and transverse momentum pTμ > 20 GeV/c in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass 60 < mμμ < 120 GeV/c2 and rapidity 2.5 < ycmsμμ< 4. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward (−4.46 < ycmsμμ < −2.96) and forward (2.03 < ycmsμμ < 3.53) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a 3.4σ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.
-
ϒ suppression at forward rapidity in Pb–Pb collisions at √sNN=5.02TeVInclusive ϒ(1S) and ϒ(2S) production have been measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair √sNN = 5.02 TeV, using the ALICE detector at the CERN LHC. The ϒ mesons are reconstructed in the centre-of-mass rapidity interval 2.5<y<4 and in the transverse-momentum range pT<15 GeV/c, via their decays to muon pairs. In this Letter, we present results on the inclusive ϒ(1S) nuclear modification factor RAA as a function of collision centrality, transverse momentum and rapidity. The ϒ(1S) and ϒ(2S) RAA, integrated over the centrality range 0–90%, are 0.37±0.02(stat)±0.03(syst) and 0.10±0.04(stat)±0.02(syst), respectively, leading to a ratio RAAϒ(2S)/RAAϒ(1S) of 0.28±0.12(stat)±0.06(syst). The observed ϒ(1S) suppression increases with the centrality of the collision and no significant variation is observed as a function of transverse momentum and rapidity.