• Dust aerosol optical depth retrieval and dust storm detection for Xinjiang Region using Indian National Satellite Observations

      Di, Aojie; Xue, Yong; Yang, Xihua; Leys, John; Guang, Jie; Mei, Linlu; Wang, Jingli; She, Lu; Hu, Yincui; He, Xingwei; et al. (Multidisciplinary Digital Publishing Institute (MDPI), 2016-08-26)
      The Xinjiang Uyghur Autonomous Region (Xinjiang) is located near the western border of China. Xinjiang has a high frequency of dust storms, especially in late winter and early spring. Geostationary satellite remote sensing offers an ideal way to monitor the regional distribution and intensity of dust storms, which can impact the regional climate. In this study observations from the Indian National Satellite (INSAT) 3D are used for dust storm detection in Xinjiang because of the frequent 30-min observations with six bands. An analysis of the optical properties of dust and its quantitative relationship with dust storms in Xinjiang is presented for dust events in April 2014. The Aerosol Optical Depth (AOD) derived using six predefined aerosol types shows great potential to identify dust events. Cross validation between INSAT-3D retrieved AOD and MODIS AOD shows a high coefficient of determination (R2 = 0.92). Ground validation using AERONET (Aerosol Robotic Network) AOD also shows a good correlation with R2 of 0.77. We combined the apparent reflectance (top-of-atmospheric reflectance) of visible and shortwave infrared bands, brightness temperature of infrared bands and retrieved AOD into a new Enhanced Dust Index (EDI). EDI reveals not only dust extent but also the intensity. EDI performed very well in measuring the intensity of dust storms between 22 and 24 April 2014. A visual comparison between EDI and Feng Yun-2E (FY-2E) Infrared Difference Dust Index (IDDI) also shows a high level of similarity. A good linear correlation (R2 of 0.78) between EDI and visibility on the ground demonstrates good performance of EDI in estimating dust intensity. A simple threshold method was found to have a good performance in delineating the extent of the dust plumes but inadequate for providing information on dust plume intensity.
    • An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data

      Liu, Jia; Feld, Dustin; Xue, Yong; Garcke, Jochen; Soddemann, Thomas; Pan, Peiyuan; Fraunhofer Institute of Algorhithms and Scientific Computing; Chinese Academy of Sciences; University of Cologne; London Metropolitan University; et al. (Taylor and Francis, 2016-02-25)
      Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth. However, the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures. In this article, taking the aerosol optical depth (AOD) retrieval as a study case, we exploit parallel computing methods for high efficient geophysical parameter retrieval. We present an efficient geocomputation workflow for the AOD calculation from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. According to their individual potential for parallelization, several procedures were adapted and implemented for a successful parallel execution on multi-core processors and Graphics Processing Units (GPUs). The benchmarks in this paper validate the high parallel performance of the retrieval workflow with speedups of up to 5.x on a multi-core processor with 8 threads and 43.x on a GPU. To specifically address the time-consuming model retrieval part, hybrid parallel patterns which combine the multi-core processor’s and the GPU’s compute power were implemented with static and dynamic workload distributions and evaluated on two systems with different CPU–GPU configurations. It is shown that only the dynamic hybrid implementation leads to a greatly enhanced overall exploitation of the heterogeneous hardware environment in varying circumstances.
    • Ensemble of ESA/AATSR aerosol optical depth products based on the likelihood estimate method with uncertainties

      Xie, Yanqing; Xue, Yong; Che, Yahui; Guang, Jie; Mei, Linlu; Voorhis, Dave; Fan, Cheng; She, Lu; Xu, Hui; University of Chinese Academy of Sciences; et al. (IEEE, 2017-10-20)
      Within the European Space Agency Climate Change Initiative (CCI) project Aerosol_cci, there are three aerosol optical depth (AOD) data sets of Advanced Along-Track Scanning Radiometer (AATSR) data. These are obtained using the ATSR-2/ATSR dual-view aerosol retrieval algorithm (ADV) by the Finnish Meteorological Institute, the Oxford-Rutherford Appleton Laboratory (RAL) Retrieval of Aerosol and Cloud (ORAC) algorithm by the University of Oxford/RAL, and the Swansea algorithm (SU) by the University of Swansea. The three AOD data sets vary widely. Each has unique characteristics: the spatial coverage of ORAC is greater, but the accuracy of ADV and SU is higher, so none is significantly better than the others, and each has shortcomings that limit the scope of its application. To address this, we propose a method for converging these three products to create a single data set with higher spatial coverage and better accuracy. The fusion algorithm consists of three parts: the first part is to remove the systematic errors; the second part is to calculate the uncertainty and fusion of data sets using the maximum likelihood estimate method; and the third part is to mask outliers with a threshold of 0.12. The ensemble AOD results show that the spatial coverage of fused data set after mask is 148%, 13%, and 181% higher than those of ADV, ORAC, and SU, respectively, and the root-mean-square error, mean absolute error, mean bias error, and relative mean bias are superior to those of the three original data sets. Thus, the accuracy and spatial coverage of the fused AOD data set masked with a threshold of 0.12 are improved compared to the original data set. Finally, we discuss the selection of mask thresholds.
    • High-throughput geocomputational workflows in a grid environment

      Liu, Jia; Xue, Yong; Palmer-Brown, Dominic; Chen, Ziqiang; He, Xingwei; Chinese Academy of Sciences; London Metropolitan University (IEEE, 2015-11-13)
      A grid-computing platform facilitates geocomputational workflow composition to process big geosciences data while fully using idle resources to accelerate processing speed. An experiment with aerosol optical depth retrieval from satellite data shows a 25 percent improvement in runtime over a single high-performance computer.
    • Improved aerosol optical depth and ångstrom exponent retrieval over land From MODIS based on the non-lambertian forward model

      Leiku, Yang; Xue, Yong; Guang, Jie; Hassan, Kazemian; Zhang, Jiahua; Li, Chi; Beijing Normal University; Institute of Remote Sensing and Digital Earth; London Metropolitan University (IEEE, 2014-02-28)
      In this letter, an improved algorithm for aerosol retrieval is presented by employing the non-Lambertian forward model (forward model) (NL_FM) in the Moderate Resolution Imaging Spectroradiometer (MODIS) dark target (DT) algorithm to reduce the uncertainties induced when using the Lambertian FM (L_FM). This new algorithm was applied to MODIS measurements of the whole year of 2008 over Eastern China. By comparing the results with that of AERONET, we found that the accuracy of the aerosol optical depth (AOD) retrieval was improved with the regression plots concentrating around the 1 : 1 line and two-thirds falling within the expected error (EE) envelope EE = ±0.05±0.1τ (from 53.6% with L_FM to 68.7% with NL_FM at band 0.55 μm). Surprisingly, more accurate retrieval of the AOD demonstrated significantly improved the Ångstrom exponent (AE) retrieval, which is related to particle size parameters. The regression plots tended to concentrate around the 1 : 1 line, and many more fell within the EE = ±0.4 from 53.6% with L_FM to 80.9% with NL_FM. These results demonstrate that including the NL_FM in the MODIS DT algorithm has the potential to significantly improve both AOD and AE retrievals with respect to AERONET in comparison to the L_FM used in the current MODIS operational retrievals.
    • Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe

      Xue, Yong; He, Xingwei; de Leeuw, Gerrit; Mei, Linlu; Che, Yahui; Rippin, Wayne; Guang, Jie; Hu, Yincui; University of Chinese Academy of Sciences; University of Derby; et al. (Elsevier, 2017-07-06)
      An algorithm for the retrieval of the aerosol optical depth over land (ADL) using radiances at the top of the atmosphere (TOA) measured by the Advanced Very High Resolution Radiometer (AVHRR) is proposed. AVHRR is the only satellite sensor providing nearly continuous global coverage since June 1979, which could generate the longest aerosol climate data records currently available from operational satellites. In the implementation of the ADL algorithm, an analytical model is used which couples an atmospheric radiative transfer model and a land surface reflectance parameterization. The radiation field can be separated into three parts: direct radiance, single-scattered radiance, and multiple-scattered. Each of these parts is individually parameterized. To obtain the surface reflectance in an automatic retrieval procedure over land for AVHRR, the aerosol scattering effect at 3.75 μm was assumed to be negligible and relationships between the surface reflectances at 0.64 μm and 3.75 μm were evaluated for different surface types and the authors propose to use these to obtain the surface reflectance at the shorter wavelength. The 0.64 μm surface reflectance was then used in a radiative transfer model to compute AOD at that wavelength using six different aerosol types, where optimal estimation (OE) theory is applied to minimize the difference between modeled and measured radiances. The ADL algorithm is applied to re-calibrated Level 1B radiances from the AVHRRs on-board the TIROS-N and the Metop-B satellites to retrieve the AOD over North China and Central Europe. The results show that the AOD retrieved from these two instruments are in agreement with co-located AOD values from ground-based reference networks. Over North China, using AERONET sites, 58% of the ADL AOD values are within an expected error (EE) range of ±(0.05 + 20%) and 53% are within the EE range of ±(0.05 + 15%). For GAW-PFR (World Meteorological Organization, WMO, Global Atmosphere Watch, GAW) sites, part of the European ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure) sites, 79% of the ADL AOD values are within the EE range of ±(0.05 + 20%) and 75% are within the EE range of ±(0.05 + 15%). Not surprisingly, the agreement is better over Europe with generally lower AOD values. An additional cross comparison of the AOD results with MODIS (MODerate-resolution Imaging Spectroradiometer) DeepBlue aerosol products shows that the spatial distributions of the two AOD datasets are similar, but with generally lower values for ADL and lower coverage. The temporal variation of the annual mean AOD over selected AERONET sites shows that ADL values are generally between 0.2 and 0.5 over North-Eastern China and trace the MODIS and AERONET data for the overlapping years quite well.