• Implementation of fuel cell and photovoltaic panels based DC micro grid prototype for electric vehicles charging station

      Benyahia, N.; Tamalouzt, S.; Denoun, H.; Badji, A.; Bousbaine, A.; Moualek, R.; Benamrouche, N.; Mouloud Mammeri University, Tizi-Ouzou, Algeria; Abderrahmane Mira University, Bejaia, Algeria; University of Derby (Springer Singapore, 2020-08-20)
      Today, electric vehicle (EV) appears as an evident solution for the future automotive market. The introduction of EV will lead to the reduction of greenhouse gas emissions and decrease the travelling cost. However, electric vehicle is truly an ecological solution only if the production of electricity necessary for its operation is produced from sustainable energy sources. In this paper, an Electric Vehicle Charging Station (EVCS) through sustainable energy sources via a DC micro-grid system has been proposed. The proposed system includes a fuel cell (FC), photovoltaic (PV) panels, storage battery and possibility of a connection to the grid. In this work a low power prototype of a micro-grid based EVCS has been first validated using a numerical simulation under Matlab/Simulink using variable irradiance and number of recharging vehicles. In the second part of this paper, an EVCS prototype has been realized in the laboratory. The tests are realized using an emulator of the PEM fuel cell with the concept of the hardware-in-the-loop (HIL). The objective of this emulation is to evaluate the performances of the whole system without the need for a real fuel cell. The whole system is implemented on the dSPACE 1103 platform and the results of the tests are discussed.
    • Proton exchange membrane fuel cell modules for ship applications

      Tamalouzt, S.; Benyahia, N.; Bousbaine, A.; University of Bejaia, Algeria; Mouloud Mammeri University, Tizi-Ouzou, Algeria; University of Derby (Springer, 2020-08-20)
      In this article, we proposed a more reliable architecture composed of five fuel cell modules (FC), a storage system composed of battery and supercapacitor was also proposed to support the operation of the fuel cell. The main objective of this work is to study the feasibility of using the global system for small marine applications. In this paper, the global system was modeled and then simulated using Matlab/Simulink. The fuel cell is used as the main power source; each fuel cell is connected with a DC bus via a DC–DC boost converter. The Energy Storage System (HESS) is controlled as a fast-bidirectional auxiliary power source, it contains a battery and supercapacitors and each source is connected to the DC bus via a bidirectional buck-boost DC–DC converter (BBDCC). In order to optimize the HESS, the supercapacitors and the batteries are designed to allow high-efficiency operation and minimal weight. The entire system’s energy management algorithm (PMA) is developed to satisfy the energy demand of the boat. Finally, simulation tests are presented in Matlab/Simulink and discussed, where the effectiveness of the proposed system with its control is confirmed.