• Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia

      Cavallaro, Lucia; Ficara, Annamaria; De Meo, Pasquale; Fiumara, Giacomo; Catanese, Salvatore; Bagdasar, Ovidiu; Song, Wei; Liotta, Antonio; University of Derby; niversity of Palermo, Palermo, Italy; et al. (Public Library of Science (PLoS), 2020-08-05)
      Compared to other types of social networks, criminal networks present particularly hard challenges, due to their strong resilience to disruption, which poses severe hurdles to Law-Enforcement Agencies (LEAs). Herein, we borrow methods and tools from Social Network Analysis (SNA) to (i) unveil the structure and organization of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently reduce the Largest Connected Component (LCC) of two networks derived from them. Mafia networks have peculiar features in terms of the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations. Analysts also face difficulties in collecting reliable datasets that accurately describe the gangs’ internal structure and their relationships with the external world, which is why earlier studies are largely qualitative, elusive and incomplete. An added value of our work is the generation of two real-world datasets, based on raw data extracted from juridical acts, relating to a Mafia organization that operated in Sicily during the first decade of 2000s. We created two different networks, capturing phone calls and physical meetings, respectively. Our analysis simulated different intervention procedures: (i) arresting one criminal at a time (sequential node removal); and (ii) police raids (node block removal). In both the sequential, and the node block removal intervention procedures, the Betweenness centrality was the most effective strategy in prioritizing the nodes to be removed. For instance, when targeting the top 5% nodes with the largest Betweenness centrality, our simulations suggest a reduction of up to 70% in the size of the LCC. We also identified that, due the peculiar type of interactions in criminal networks (namely, the distribution of the interactions’ frequency), no significant differences exist between weighted and unweighted network analysis. Our work has significant practical applications for perturbing the operations of criminal and terrorist networks.
    • A GRU-based prediction framework for intelligent resource management at cloud data centres in the age of 5G

      Lu, Yao; Liu, Lu; Panneerselvam, John; Yuan, Bo; Gu, Jiayan; Antonopoulos, Nick; University of Leicester; University of Derby; Edinburgh Napier University (IEEE, 2019-11-19)
      The increasing deployments of 5G mobile communication system is expected to bring more processing power and storage supplements to Internet of Things (IoT) and mobile devices. It is foreseeable the billions of devices will be connected and it is extremely likely that these devices receive compute supplements from Clouds and upload data to the back-end datacentres for execution. Increasing number of workloads at the Cloud datacentres demand better and efficient strategies of resource management in such a way to boost the socio-economic benefits of the service providers. To this end, this paper proposes an intelligent prediction framework named IGRU-SD (Improved Gated Recurrent Unit with Stragglers Detection) based on state-of-art data analytics and Artificial Intelligence (AI) techniques, aimed at predicting the anticipated level of resource requests over a period of time into the future. Our proposed prediction framework exploits an improved GRU neural network integrated with a resource straggler detection module to classify tasks based on their resource intensity, and further predicts the expected level of resource requests. Performance evaluations conducted on real-world Cloud trace logs demonstrate that the proposed IGRU-SD prediction framework outperforms the existing predicting models based on ARIMA, RNN and LSTM in terms of the achieved prediction accuracy.
    • An inductive content-augmented network embedding model for edge artificial intelligence

      Yuan, Bo; Panneerselvam, John; Liu, Lu; Antonopoulos, Nick; Lu, Yao; University of Derby; Tongji University, Shanghai, China; University of Leicester; Edinburgh Napier University (IEEE, 2019-03-04)
      Real-time data processing applications demand dynamic resource provisioning and efficient service discovery, which is particularly challenging in resource-constraint edge computing environments. Network embedding techniques can potentially aid effective resource discovery services in edge environments, by achieving a proximity-preserving representation of the network resources. Most of the existing techniques of network embedding fail to capture accurate proximity information among the network nodes and further lack exploiting information beyond the second-order neighbourhood. This paper leverages artificial intelligence for network representation and proposes a deep learning model, named inductive content augmented network embedding (ICANE), which integrates the network structure and resource content attributes into a feature vector. Secondly, a hierarchical aggregation approach is introduced to explicitly learn the network representation through sampling the nodes and aggregating features from the higher-order neighbourhood. A semantic proximity search model is then designed to generate the top-k ranking of relevant nodes using the learned network representation. Experiments conducted on real-world datasets demonstrate the superiority of the proposed model over the existing popular methods in terms of resource discovery and the query resolving performance.