• Innovative approach to sustainable material sourcing and its impact on building performance

      Rajpurohit J.S., Ceranic B., Latham D.; University of Derby (WIT Press, 2019-01-29)
      In this paper, a novel use of building materials and their impact on the building performance and its climatic adaptability is explored, based on a complex case study of a unique low energy sustainable building project. In particular, an innovative use of sycamore and its suitability as a structural and constructional timber has been investigated and reported, given that the current codes of practice deem that is not appropriate for structural applications due to its durability. A research method of in-situ longitudinal study has been adopted, concentrating on the monitoring and assessment of its structural performance and conditions in which it might deteriorate. On the component level, the research reports on the methods and standards of sycamore grading and classification, service classes, resistance to decay, impact of the moisture movement and results of its laboratory and in situ testing. On the system level, the climatic adaptability of the building as a whole has been analysed via dynamic performance simulation and compared to the in-situ measurements. This was important in order to develop a holistic building performance monitoring strategy, but in particular, to understand the impact of building microclimate on the sycamore frame and hempcrete components of the external load-bearing wall. So far research has concluded that sycamore can be used as structural and constructional material in building design, but due attention has to be paid to construction detailing and provision of a breathable, low humidity environment with an effective resistance to decay and insect attack. This includes measures that ensure a low equilibrium moisture content conditions, effective ventilation provision and appropriate service class uses. It is important to state however, given the single site locality of sycamore sourcing, that results can only be interpreted in the context of the given case study, i.e. they cannot be extrapolated to broader geographical extents.
    • Sustainable Sourcing and Innovative Use of Building Materials: Case Study of Energy Plus House, Hieron's Wood, Derbyshire UK

      Ceranic, Boris; Latham, Derek; Dean, Angela; University of Derby (NORTH ATLANTIC UNIVERSITY UNION, 2016-07)
      In this paper research on sustainable sourcing and innovative use of building materials is explored, through the prism of a complex case study of real building project. In particular, a novel use of sycamore as a structural material is investigated and reported. This includes methods and standards of its grading and classification, service classes and resistance to decay, in addition to results of its laboratory and in situ testing. A research method of longitudinal study is adopted, concentrating on the monitoring and assessment of its structural performance and conditions in which it might deteriorate. The study comprised of extensive desktop research on the sycamore properties, its standards and classification, followed by laboratory testing of its mechanical properties, namely bending strength and compression parallel to grain. In addition, an experimental build with half sycamore-half softwood structural timber frame was designed and constructed and early monitoring and assessment results reported. Finally, the in situ testing on the main building was undertaken, including visual observations, measurements of moisture content and wood decay detection. The latter was undertaken using digital micro probe to identify potential soft wood and cavities in sycamore and determine the extent of problems. So far research has established that sycamore can be applied to the structural and constructional aspects of building design and assembly, as long as due attention is paid to its detailing and resistance to decay and insect attack, moisture control, ventilation provision and service class uses. However, it has to be noted that the research findings of this project cannot be statistically extrapolated to a broader geographical extents, due to the locality of sycamore sourcing limited to within the site boundaries.