• A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law.

      Malikan, Mohammad; Nguyen, Van Bac; Islamic Azad University; University of Derby; Islamic Azad University Mashhad Branch Mashhad Iran (the Islamic Republic of); University of Derby Derbyshire United Kingdom of Great Britain and Northern Ireland (Emerald Group Publishing Limited, 2018-10-04)
      Purpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors have been remained owing to the fact that the exact value of SCF has not already been accurately identified. By using two-variable first-order shear deformation theories, these errors decreased further by removing the SCF. To consider nanoscale effects on the plate, Eringen’s nonlocal elasticity theory was adopted. The critical buckling loads were computed by Navier’s approach. The obtained numerical resultswere then compared with previous studies’ results using molecular dynamics simulations and other plate theories for validation which also showed the accuracy and simplicity of the proposed theory. Findings – In comparing the biaxial buckling results of the proposed theory with the two-variable shear deformation theories and exact results, it revealed that the two-variable plate theories were not appropriate for the investigation of a symmetrical analyses. Originality/value – A formulation for FSDT was innovated by reconsidering its errors to improve the FSDT for investigation of mechanical behavior of nanoplates.