• The effect of warm-up on high-intensity, intermittent running using nonmotorized treadmill ergometry.

      Brown, Peter I.; Hughes, Michael G.; Tong, Richard J.; University of Derby, Department of Sport and Exercise (2008-05)
      The aim of this study was to investigate the effect of previous warming on high-intensity intermittent running using nonmotorized treadmill ergometry. Ten male soccer players completed a repeated sprint test (10 x 6-second sprints with 34-second recovery) on a nonmotorized treadmill preceded by an active warm-up (10 minutes of running: 70% VO2max; mean core temperature (Tc) 37.8 +/- 0.2 degrees C), a passive warm-up (hot water submersion: 40.1 +/- 0.2 degrees C until Tc reached that of the active warm-up; 10 minutes +/- 23 seconds), or no warm-up (control). All warm-up conditions were followed by a 10-minute static recovery period with no stretching permitted. After the 10-minute rest period, Tc was higher before exercise in the passive trial (38.0 +/- 0.2 degrees C) compared to the active (37.7 +/- 0.4 degrees C) and control trials (37.2 +/- 0.2 degrees C; p < 0.05). There were no differences in pre-exercise oxygen consumption and blood lactate concentration; however, heart rate was greater in the active trial (p < 0.05). The peak mean 1-second maximum speed (MxSP) and group mean MxSP were not different in the active and passive trials (7.28 +/- 0.12 and 7.16 +/- 0.10 m x s(-1), respectively, and 7.07 +/- 0.33 and 7.02 +/- 0.24 m x s(-1), respectively; p > 0.05), although both were greater than the control. The percentage of decrement in performance fatigue was similar between all conditions (active, 3.4 +/- 1.3%; passive, 4.0 +/- 2.0%; and control, 3.7 +/- 2.4%). We conclude that there is no difference in high-intensity intermittent running performance when preceded by an active or passive warm-up when matched for post-warm-up Tc. However, repeated sprinting ability is significantly improved after both active and passive warm-ups compared to no warm-up.
    • Health, fitness, and responses to military training of officer cadets in a Gulf Cooperation Council country.

      Blacker, Sam D.; Horner, Fleur E.; Brown, Peter I.; Linnane, Denise M.; Wilkinson, David M.; Wright, Antony; Bluck, Les J.; Rayson, Mark P.; Optimal Performance Limited (2011-12)
      To quantify the health, fitness, and physiological responses to military training of Officer Cadets from a Gulf Cooperation Council country.
    • Influence of hydration volume and ambient temperature on physiological responses while wearing CBRN protective clothing.

      Brown, Peter I.; McLellan, Tom M.; Linnane, Denise M.; Wilkinson, David M.; Richmond, Victoria L.; Horner, Fleur E.; Blacker, Sam D.; Rayson, Mark P.; University of Derby, Department of Sport and Exercise (2010-12)
      This study examined a low (L; 5 ml/kg per h) and high (H, 10 ml/kg per h) rate of fluid replacement in moderate (18°C) and hot (30°C) conditions on physiological responses while wearing personal protective equipment (PPE). PPE included the gas-tight suit (GTS), the powered respirator protective suit (PRPS) and the civil responder 1 (CR1). Relative to the moderate condition, physiological responses were greater in the hot condition. The percentage change in body mass was different (p < 0.05) between L and H in the hot (L vs. H, GTS: -0.83 vs. -0.38%; PRPS: -1.18 vs. -0.71%; CR1: -1.62 vs. -0.57%) and moderate conditions, although in GTS and CR1 body mass increased (L vs. H, GTS: -0.48 vs. 0.06%; PRPS: -0.66 vs. -0.11%; CR1: -0.18 vs. 0.67%). Fluid replacement strategies for PPE should be adjusted for environmental conditions in order to avoid >1% body mass loss and/or net body mass gain. STATEMENT OF RELEVANCE: Currently, the UK Emergency Services do not have specific evidence-based fluid replacement guidelines to follow when wearing chemical, biological, radiological and/or nuclear (CBRN) PPE. Although ad libitum fluid replacement is encouraged (when breathing apparatus permits), recommendations from evidence-based findings specific to different PPE and to different environmental conditions are lacking. This study provides novel evidence supporting the need to develop fluid replacement strategies during CBRN deployments in both moderate and hot environmental conditions for CBRN PPE.
    • Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise.

      Brown, Peter I.; Sharpe, Graham R.; Johnson, Michael A.; University of Derby, Department of Sport and Exercise (2012-06)
      We examined the effects of inspiratory muscle training (IMT) upon volitional hyperpnoea-mediated increases in blood lactate ([lac(-)](B)) during cycling at maximal lactate steady state (MLSS) power, and blood lactate and oxygen uptake kinetics at the onset of exercise. Twenty males formed either an IMT (n = 10) or control group (n = 10). Prior to and following a 6-week intervention, two 30 min trials were performed at MLSS (207 ± 28 W), determined using repeated 30 min constant power trials. The first was a reference trial, whereas during the second trial, from 20 to 28 min, participants mimicked the breathing pattern commensurate with 90% of the maximal incremental exercise test minute ventilation ([Formula: see text]). Prior to the intervention, the MLSS [lac(-)](B) was 3.7 ± 1.8 and 3.9 ± 1.6 mmol L(-1) in the IMT and control groups, respectively. During volitional hyperpnoea, [Formula: see text] increased from 79.9 ± 9.5 and 76.3 ± 15.4 L min(-1) at 20 min to 137.8 ± 15.2 and 135.0 ± 19.7 L min(-1) in IMT and control groups, respectively; [lac(-)](B) concurrently increased by 1.0 ± 0.6 (+27%) and 0.9 ± 0.7 mmol L(-1) (+25%), respectively (P < 0.05). Following the intervention, maximal inspiratory mouth pressure increased 19% in the IMT group only (P < 0.01). Following IMT only, the increase in [lac(-)](B) during volitional hyperpnoea was abolished (P < 0.05). In addition, the blood lactate (-28%) and phase II oxygen uptake (-31%) kinetics time constants at the onset of exercise and the MLSS [lac(-)](B) (-15%) were reduced (P < 0.05). We attribute these changes to an IMT-mediated increase in the oxidative and/or lactate transport capacity of the inspiratory muscles.
    • Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power.

      Johnson, Michael A.; Sharpe, Graham R.; Brown, Peter I.; University of Derby, Department of Sport and Exercise (2007-12)
      We examined whether inspiratory muscle training (IMT) improved cycling time-trial performance and changed the relationship between limit work (W (lim)) and limit time (T (lim)), which is described by the parameters critical power (CP) and anaerobic work capacity (AWC). Eighteen male cyclists were assigned to either a pressure-threshold IMT or sham hypoxic-training placebo (PLC) group. Prior to and following a 6 week intervention subjects completed a 25-km cycling time-trial and three constant-power tests to establish the W (lim)-T (lim) relationship. Constant-power tests were prescribed to elicit exercise intolerance within 3-10 (Ex1), 10-20 (Ex2), and 20-30 (Ex3) min. Maximal inspiratory mouth pressure increased by (mean +/- SD) 17.1 +/- 12.2% following IMT (P < 0.01) and was accompanied by a 2.66 +/- 2.51% improvement in 25-km time-trial performance (P < 0.05); there were no changes following PLC. Constant-power cycling endurance was unchanged following PLC, as was CP (pre vs. post: 249 +/- 32 vs. 250 +/- 32 W) and AWC (30.7 +/- 12.7 vs. 30.1 +/- 12.5 kJ). Following IMT Ex1 and Ex3 cycling endurance improved by 18.3 +/- 15.1 and 15.3 +/- 19.1% (P < 0.05), respectively, CP was unchanged (264 +/- 62 vs. 263 +/- 61 W), but AWC increased from 24.8 +/- 5.6 to 29.0 +/- 8.4 kJ (P < 0.05). In conclusion, these data provide novel evidence that improvements in constant-power and cycling time-trial performance following IMT in cyclists may be explained, in part, by an increase in AWC.
    • Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea.

      Brown, Peter I.; Sharpe, Graham R.; Johnson, Michael A.; University of Derby, Department of Sport and Exercise (2008-09)
      Although reduced blood lactate concentrations ([lac(-)](B)) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac(-)](B) caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (.V(E) max) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% .V(E) max. The IMT group performed 6 weeks of pressure-threshold IMT; the control group performed no IMT. Maximal inspiratory mouth pressure increased (mean +/- SD) 31 +/- 22% following IMT and was unchanged in the control group. Prior to the intervention in the control group, [lac(-)](B) increased from 0.76 +/- 0.24 mmol L(-1) at rest to 1.50 +/- 0.60 mmol L(-1) (P < 0.05) following 10 min volitional hyperpnoea. In the IMT group, [lac(-)](B) increased from 0.85 +/- 0.40 mmol L(-1) at rest to 2.02 +/- 0.85 mmol L(-1) following 10 min volitional hyperpnoea (P < 0.05). After 6 weeks, increases in [lac(-)](B) during volitional hyperpnoea were unchanged in the control group. Conversely, following IMT the increase in [lac(-)](B) during volitional hyperpnoea was reduced by 17 +/- 37% and 25 +/- 34% following 8 and 10 min, respectively (P < 0.05). In conclusion, increases in [lac(-)](B) during volitional hyperpnoea at 85% .V(E) max were attenuated following IMT. These findings suggest that the inspiratory muscles were the source of at least part of this reduction, and provide a possible explanation for some of the IMT-mediated reductions in [lac(-)](B), often observed during whole-body exercise.
    • Investigations of the lactate minimum test.

      Johnson, Michael A.; Sharpe, Graham R.; Brown, Peter I.; University of Derby, Department of Sport and Exercise (2009-06)
      We evaluated: the agreement between lactate minimum and maximal lactate steady state (MLSS) cycling powers (study 1); whether rates of change of blood lactate concentration during the lactate minimum test reflect that of constant power exercise (study 2); whether the lactate minimum power is influenced by the muscle groups used to elevate blood lactate concentration (study 3). Study 1: 32 subjects performed a lactate minimum test comprising a lactate elevation phase, recovery phase, and incremental phase (five 4 min stages); MLSS was subsequently determined. Study 2: 8 subjects performed a lactate minimum test and five 22 min constant power tests at the incremental phase exercise intensities. Study 3: 10 subjects performed two identical lactate minimum tests, except during the second test the lactate elevation phase comprised arm-cranking. Lactate minimum and MLSS powers demonstrated good agreement (mean bias+/-95% limits of agreement: 2+/-22 W). Rates of change of blood lactate concentration during each incremental phase stage and corresponding constant power test did not correlate. Lactate minimum power was lowered when arm-cranking was used during the lactate elevation phase (157+/-29 vs. 168+/-21 W; p<0.05). The lactate elevation phase modifies blood lactate concentration responses during the incremental phase, thus good agreement between lactate minimum and MLSS powers seems fortuitous.
    • Loading of trained inspiratory muscles speeds lactate recovery kinetics.

      Brown, Peter I.; Sharpe, Graham R.; Johnson, Michael A.; University of Derby, Department of Sport and Exercise (2010-06)
      The purpose of this study was to investigate the effects of inspiratory threshold loading (ITL) and inspiratory muscle training (IMT) on blood lactate concentration ([lac(-)]B) and acid-base balance after maximal incremental cycling.
    • Relationship between VO(2max) and repeated sprint ability using non-motorised treadmill ergometry.

      Brown, Peter I.; Hughes, Michael G.; Tong, Richard J.; University of Derby, Department of Sport and Exercise (2007-06)
      The aim of this study was to investigate the relationship between maximal oxygen uptake (Vo(2max)) and repeated sprint ability (RSA) using non-motorised treadmill ergometry.
    • Respiratory-related limitations in physically demanding occupations.

      Brown, Peter I.; McConnell, Alison K.; University of Derby, Department of Sport and Exercise (2012-04)
      Respiratory muscle work limits high-intensity exercise tolerance in healthy human beings. Emerging evidence suggests similar limitations exist during submaximal work in some physically demanding occupations. In an occupational setting, heavy loads are routinely carried upon the trunk in the form of body armor, backpacks, and/or compressed air cylinders by military, emergency service, and mountain rescue personnel. This personal and respiratory protective equipment impairs respiratory muscle function and increases respiratory muscle work. More specifically, thoracic load carriage induces a restrictive ventilatory limitation which increases the elastic work of breathing, rendering the respiratory muscles vulnerable to fatigue and inducing a concomitant reduction in exercise tolerance. Similarly, breathing apparatus worn by occupational personnel, including fire fighters and military and commercial divers, increases the inspiratory elastic and expiratory resistive work of breathing, precipitating significant inspiratory and expiratory muscle fatigue and a reduction in exercise tolerance. An argument is presented that the unique respiratory challenges encountered in some occupational settings require further research, since these may affect the operational effectiveness and the health and safety of personnel working in physically demanding occupations.
    • Response.

      Johnson, Michael A.; Mills, Dean E.; Brown, Peter I.; Sharpe, Graham R. (2013-01)