• Login
    Search 
    •   Home
    • Research Publications
    • Search
    •   Home
    • Research Publications
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UDORACommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CommunityTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    Filter by Category

    Subjects
    CFD (2)
    Natural ventilation (2)
    Wind catcher (2)Wind tunnel (1)View MoreJournal
    USES 2015 - The University of Sheffield Engineering Symposium (2)
    AuthorsCalautit, John Kaiser (2)Hughes, Ben (2)Nasir, Diana S. N. M. (2)
    Shahzad, Sally (2)
    Shahzad, Sally (2) ccYear (Issue Date)
    2015 (2)
    Types
    Article (2)

    About and further information

    AboutOpen Access WebpagesOpen Access PolicyTake Down Policy Quick Guide for Submissions - Doctoral StudentsUniversity NewsTools for ResearchersLibraryUDo

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Numerical Analysis of a Wind Catcher Assisted Passive Cooling Technology.

    Calautit, John Kaiser; Hughes, Ben; Shahzad, Sally; Nasir, Diana S. N. M. (USES 2015 - The University of Sheffield Engineering Symposium, 2015)
    Buildings are responsible for almost 40% of the world energy usage. Heating Ventilation and Air-Conditioning (HVAC) systems consume more than 60% of the total energy use of buildings. Clearly any technology that reduces HVAC consumption will have a dramatic effect on the energy performance of the building. Natural ventilation offers the opportunity to eliminate the mechanical requirements of HVAC systems by using the natural driving forces of external wind and buoyancy effect. One technology, which incorporates both wind and buoyancy driven forces, is the wind catcher. Wind catchers are natural ventilation systems based on the design of traditional architecture. Though the movement of air caused by the wind catcher will lead to a cooling sensation for occupants, the high air temperature in hot climates will result in little cooling to occupants. In order to maximise the properties of cooling by wind catchers, heat transfer devices were incorporated into the design to reduce the supply air temperature. The aim of this work was to investigate the performance of a wind catcher integrated with heat transfer devices using numerical modelling and wind tunnel experiment. The wind catcher model was incorporated to a building, representing a small room of 15 people. Care was taken to generate a high-quality CFD grid and specify consistent boundary conditions. An experimental model was created using 3D printing and tested in a wind tunnel. Qualitative and quantitative wind tunnel measurements were compared with the CFD data and good correlation was observed. The study highlighted the potential of the proposed wind catcher in reducing the air temperature by up to 12 K and supplying the required fresh air rates.
    Thumbnail

    Numerical Analysis of a Wind Catcher Assisted Passive Cooling Technology

    Calautit, John Kaiser; Hughes, Ben; Shahzad, Sally; Nasir, Diana S. N. M. (USES 2015 - The University of Sheffield Engineering Symposium, 2015)
    Buildings are responsible for almost 40% of the world energy usage. Heating Ventilation and Air-Conditioning (HVAC) systems consume more than 60% of the total energy use of buildings. Clearly any technology that reduces HVAC consumption will have a dramatic effect on the energy performance of the building. Natural ventilation offers the opportunity to eliminate the mechanical requirements of HVAC systems by using the natural driving forces of external wind and buoyancy effect. One technology, which incorporates both wind and buoyancy driven forces, is the wind catcher. Wind catchers are natural ventilation systems based on the design of traditional architecture. Though the movement of air caused by the wind catcher will lead to a cooling sensation for occupants, the high air temperature in hot climates will result in little cooling to occupants. In order to maximise the properties of cooling by wind catchers, heat transfer devices were incorporated into the design to reduce the supply air temperature. The aim of this work was to investigate the performance of a wind catcher integrated with heat transfer devices using numerical modelling and wind tunnel experiment. The wind catcher model was incorporated to a building, representing a small room of 15 people. Care was taken to generate a high-quality CFD grid and specify consistent boundary conditions. An experimental model was created using 3D printing and tested in a wind tunnel. Qualitative and quantitative wind tunnel measurements were compared with the CFD data and good correlation was observed. The study highlighted the potential of the proposed wind catcher in reducing the air temperature by up to 12 K and supplying the required fresh air rates.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.