Hdl Handle:
http://hdl.handle.net/10545/620886
Title:
Local maximum points of explicitly quasiconvex functions
Authors:
Bagdasar, Ovidiu ( 0000-0003-4193-9842 ) ; Popovici, Nicolae
Abstract:
This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions.
Affiliation:
University of Derby
Citation:
Bagdasar, O. & Popovici, (2015) 'Local maximum points of explicitly quasiconvex functions' Optimization Letters, 9: 769. doi:10.1007/s11590-014-0781-3
Publisher:
Springer
Journal:
Optimization Letters
Issue Date:
17-Aug-2014
URI:
http://hdl.handle.net/10545/620886
DOI:
10.1007/s11590-014-0781-3
Additional Links:
http://link.springer.com/10.1007/s11590-014-0781-3
Type:
Article
Language:
en
ISSN:
1862-4472
EISSN:
1862-4480
Appears in Collections:
Department of Electronics, Computing & Maths

Full metadata record

DC FieldValue Language
dc.contributor.authorBagdasar, Ovidiuen
dc.contributor.authorPopovici, Nicolaeen
dc.date.accessioned2016-11-17T09:25:09Z-
dc.date.available2016-11-17T09:25:09Z-
dc.date.issued2014-08-17-
dc.identifier.citationBagdasar, O. & Popovici, (2015) 'Local maximum points of explicitly quasiconvex functions' Optimization Letters, 9: 769. doi:10.1007/s11590-014-0781-3en
dc.identifier.issn1862-4472-
dc.identifier.doi10.1007/s11590-014-0781-3-
dc.identifier.urihttp://hdl.handle.net/10545/620886-
dc.description.abstractThis work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urlhttp://link.springer.com/10.1007/s11590-014-0781-3en
dc.rightsArchived with thanks to Optimization Lettersen
dc.subjectLocal maximum pointen
dc.subjectRelative algebraic interioren
dc.subjectConvex functionen
dc.subjectExplicitly quasiconvex functionen
dc.subjectStrictly convex spaceen
dc.subjectLeast squares problemen
dc.titleLocal maximum points of explicitly quasiconvex functionsen
dc.typeArticleen
dc.identifier.eissn1862-4480-
dc.contributor.departmentUniversity of Derbyen
dc.identifier.journalOptimization Lettersen
This item is licensed under a Creative Commons License
Creative Commons
All Items in UDORA are protected by copyright, with all rights reserved, unless otherwise indicated.