The Asymptotic Form of the Sum $\sum_{i=0}^{n} i^{p} { n+i \choose i }$: Two Proofs

Hdl Handle:
http://hdl.handle.net/10545/620839
Title:
The Asymptotic Form of the Sum $\sum_{i=0}^{n} i^{p} { n+i \choose i }$: Two Proofs
Authors:
Larcombe, Peter J.; Kirschenhofer, Peter ( 0000-0002-5781-9370 ) ; Fennessey, Eric J.
Affiliation:
University of Derby
Citation:
Kirschenhofer, P., Larcombe, P.J. and Fennessey, E.J., 2014. The Asymptotic Form of the Sum Sigma (n)(i= 0) i (P)((n+ i)(i)): Two Proofs. UTILITAS MATHEMATICA, 93, pp.3-23.
Publisher:
The Institute of Combinatorics and its Applications
Journal:
Utilitas Mathematica
Issue Date:
2014
URI:
http://hdl.handle.net/10545/620839
Additional Links:
http://bkocay.cs.umanitoba.ca/utilitas/index.html
Type:
Article
Language:
en
ISSN:
0315-3681
Appears in Collections:
Department of Electronics, Computing & Maths

Full metadata record

DC FieldValue Language
dc.contributor.authorLarcombe, Peter J.en
dc.contributor.authorKirschenhofer, Peteren
dc.contributor.authorFennessey, Eric J.en
dc.date.accessioned2016-11-15T09:36:11Z-
dc.date.available2016-11-15T09:36:11Z-
dc.date.issued2014-
dc.identifier.citationKirschenhofer, P., Larcombe, P.J. and Fennessey, E.J., 2014. The Asymptotic Form of the Sum Sigma (n)(i= 0) i (P)((n+ i)(i)): Two Proofs. UTILITAS MATHEMATICA, 93, pp.3-23.en
dc.identifier.issn0315-3681-
dc.identifier.urihttp://hdl.handle.net/10545/620839-
dc.language.isoenen
dc.publisherThe Institute of Combinatorics and its Applicationsen
dc.relation.urlhttp://bkocay.cs.umanitoba.ca/utilitas/index.htmlen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDiscrete mathematicsen
dc.subjectApplied mathematicsen
dc.titleThe Asymptotic Form of the Sum $\sum_{i=0}^{n} i^{p} { n+i \choose i }$: Two Proofsen
dc.typeArticleen
dc.contributor.departmentUniversity of Derbyen
dc.identifier.journalUtilitas Mathematicaen
This item is licensed under a Creative Commons License
Creative Commons
All Items in UDORA are protected by copyright, with all rights reserved, unless otherwise indicated.