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On some results concerning the polygonal polynomials

DORIN ANDRICA AND OVIDIU BAGDASAR

ABSTRACT. In this paper we define the nth polygonal polynomial Pn(z) = (z − 1)(z2 − 1) · · · (zn − 1)
and we investigate recurrence relations and exact integral formulae for the coefficients of Pn(z) and for those of
the Mahonian polynomials Qn(z) = (z + 1)(z2 + z + 1) · · · (zn−1 + · · · + z + 1). We also explore numerical
properties of these coefficients, unraveling new meanings for old sequences and generating novel entries to the
Online Encyclopedia of Integer Sequences (OEIS). Some open questions are also formulated.

1. INTRODUCTION

For a positive integer n, we define the nth polygonal polynomial by

Pn(z) = (z − 1)(z2 − 1) · · · (zn − 1).(1.1)

For each k = 1, . . . , n, the roots of zk − 1 are the complex coordinates of the vertices of the
regular k-gon centered in the origin and having 1 as a vertex. Consequently, the roots of
Pn(z) are the vertices, with repetitions, of the regular k-gons, k = 1, . . . , n, motivating the
name of this polynomial. Clearly, Pn(z) has degree n(n+1)

2 and integer coefficients. These
polynomials are closely linked to Euler’s famous pentagonal number theorem concerning
the infinite expansion (1−x)(1−x2)(1−x3) · · · =

∑∞
k=−∞ (−1)

k
xk(3k−1)/2, where |x| < 1,

and the exponents are called (generalised) pentagonal numbers [4].
The polynomials Pn(z) are a special case of the general class of polynomials defined by

F z1,...,znm1,...,mn
(z) =

n∏
k=1

(zmk − zk),

where n,m1,m2, . . . ,mn are positive integers and z1, z2, . . . , zn are complex numbers with
|z1| = |z2| = · · · = |zn| = 1, introduced and investigated by Andrica and Bagdasar in [3].
This general class also contains the cyclotomic polynomials.

Recall that the nth cyclotomic polynomial Φn is defined by

Φn(z) =
∏

1≤k≤n−1
gcd(k,n)=1

(z − ζkn),(1.2)

where ζn = cos 2π
n + i sin 2π

n denotes the first primitive root of order n of the unity. It is
well known that the following formula holds

zn − 1 =
∏
d|n

Φd(z).(1.3)
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Therefore, we obtain the decomposition of Pn(z) as product of cyclotomic polynomials

Pn(z) =

n∏
k=1

∏
d|k

Φd(z).(1.4)

Because every cyclotomic polynomial is irreducible over Z ([7], Theorem 1, page 195),
it follows that Pn has exactly ν(n) =

∑n
k=1 τ(k) factors irreducible over Z, where τ(k)

denotes the number of divisors of the positive integer k. This property gives a new inter-
pretation for the integer sequence ν(n) (indexed as A006218 in the Online Encyclopedia
of Integer Sequences (OEIS) [12]), in terms of the polynomial Pn. The terms of ν(n) are

1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, 52, 58, 60, 66, 70, 74, 76, 84, 87, 91, 95, . . .

The explicit computations for the magnitude of coefficients of cyclotomic polynomials
may involve complicated formulations [8, 9], [14, p.258-259]. The integral formulae for
the coefficients of the cyclotomic polynomials established by Andrica and Bagdasar [2],
opened new perspectives in the study of these coefficients and related sequences.

It is easy to see that the direct link between the Gaussian polynomials defined by(
m

r

)
z

=
(zm − 1) · · · (zm−r+1 − 1)

(z − 1) · · · (zr − 1)
,

and the polygonal polynomials is given by the formula(
m

r

)
z

=
Pm(z)

Pr(z)Pm−r(z)
.(1.5)

While the polynomial Pn(z) seems very simple, from many points of view it can be
seen as the “father” of the cyclotomic polynomials Φd(z) (see formula (1.4) above), and it
hides deep algebraic, arithmetic and combinatorial properties. The natural companion to
Pn(z) is the Mahonian polynomial Qn(z) defined in (2.16), with a key role in the theory of
partitions. The aim of this paper is to explore the polynomials Pn(z) and Qn(z) and their
coefficients. The coefficients of Qn(z) are known as Mahonian numbers (A008302 in [12]).

In Section 2 we investigate the coefficients of Pn(z), for which we establish a recursive
formula (subsection 2.1), we deduce an exact integral formula (subsection 2.2) and give a
combinatorial interpretation (subsection 2.3). We then analyze the companion polynomial
Qn(z) (subsection 2.4), for whose coefficients we give recurrence formulae (Theorem 2.3,
Proposition 2.1). We also show by a direct computation that the polynomial Qn(z) is uni-
modal (Proposition 2.2), and we establish a link between the coefficients of polynomials
Pn(z) and Qn(z) (Theorem 2.4).

Section 3 is devoted to some integer sequences related to polynomials Pn(z) andQn(z).
First, we examine the number of distinct complex roots of Pn(z) (subsection 3.1). Then,
we analyze the sequence of middle coefficients of Pn(z) and deduce an integral formula,
and of Qn(z) (Kendall-Mann numbers), and propose some conjectures (subsection 3.2).
Furthermore, in subsection 3.3 we conjecture that every integer n can be a coefficient of
some polynomial Pm(z) (property known to hold for cyclotomic polynomials [15]), the
result being confirmed numerically for the first 105 numbers. We also propose a new
integer sequence, defined by the smallest value m, for which the integer n ≥ 1 appears as
a coefficient in Pm(z) (A301701 in [12]). Finally, in subsection 3.4 we discuss the number of
positive, negative, and zero coefficients of Pn(z), adding new entries to the OEIS, namely
the sequences A301703, A301704, and A301705.

https://oeis.org/A006218
https://oeis.org/A008302
https://oeis.org/A301701
https://oeis.org/A301703
https://oeis.org/A301704
https://oeis.org/A301705
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2. FORMULAE AND PROPERTIES OF THE COEFFICIENTS

Recall that a polynomial f(z) = a0 + a1z + · · ·+ amz
m of degree m is called

• palindromic (or reciprocal) if f(z) = zmf
(
1
z

)
, i.e., aj = am−j , j = 0, . . . ,m;

• antipalindromic (or antireciprocal) if f(z) = −zmf
(
1
z

)
, i.e., aj = −am−j ;

• unimodal if the sequence of its coefficients is unimodal, i.e., there exists an integer
t (called mode), such that a1 ≤ a2 ≤ · · · ≤ at and at ≥ at+1 ≥ · · · ≥ am.

The algebraic form of the polynomial Pn(z) in (1.1) is

Pn(z) =

n(n+1)
2∑
j=0

c
(n)
j zj .(2.6)

An easy computation shows that

Pn(z) = (−1)nz
n(n+1)

2 Pn

(
1

z

)
,

hence Pn(z) is palindromic for n even, i.e., we have c(n)j = c
(n)
n(n+1)

2 −j
, j = 0, . . . , n(n+1)

2 .

Also, it is antipalindromic for n odd, i.e., we have c(n)j = −c(n)n(n+1)
2 −j

, j = 0, . . . , n(n+1)
2 .

2.1. The recurrence formula for the coefficients of Pn(z). The coefficients of the polyno-
mial Pn(z) can be obtained recursively. Notice that

Pn(z) =

n∏
k=1

(zk − 1) = Pn−1(z) (zn − 1) .(2.7)

Using the coefficients of Pn(z) and Pn−1(z), one obtains

Pn(z) =

n(n+1)
2∑
j=0

c
(n)
j zj =

n(n−1)
2∑
j=0

c
(n−1)
j zj

 (zn − 1) .(2.8)

This indicates the following formula:

c
(n)
j =


−c(n−1)j if j ∈ {0, . . . , n− 1} ,

c
(n−1)
j−n − c(n−1)j if j ∈

{
n, . . . , n(n−1)2

}
,

c
(n−1)
j if j ∈

{
n(n−1)

2 + 1, . . . , n(n+1)
2

}
.

(2.9)

Using the recurrence (2.9), we obtain the numbers in Table 1.
The values of the coefficients c(n)j correspond to (−1)nT (n, j) of A231599 in OEIS.

2.2. The integral formula for the coefficients c(n)j . Writing the polynomial Pn(z) in the
algebraic form, one obtains

Pn(z) =

n(n+1)
2∑
j=0

c
(n)
j zj = (−1)n(1− z)(1− z2) · · · (1− zn),

therefore

c
(n)
j +

∑
k 6=j

c
(n)
k zk−j = (−1)nz−j(1− z)(1− z2) · · · (1− zn).

https://oeis.org/A231599


On some results concerning the polygonal polynomials 3

c
(1)
j -1, 1

P1(z) −1 + z

c
(2)
j 1, -1, -1, 1

P2(z) 1− z − z2 + z3

c
(3)
j -1, 1, 1, 0, -1, -1, 1

P3(z) −1 + z + z2 − z4 − z5 + z6

c
(4)
j 1, -1, -1 , 0, 0, 2 , 0, 0, -1 , -1, 1

P4(z) 1− z − z2 + 2z5 − z8 − z9 + z10

c
(5)
j -1, 1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1

P5(z) −1 + z + z2 − z5 − z6 − z7 + z8 + z9 + z10 − z13 − z14 + z15

c
(6)
j 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1

P6(z) 1− z − z2 + z5 + 2z7 − z9 − z10 − z11 − z12 + 2z14 + z16 − z19 − z20 + z21

c
(7)
j -1, 1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 2, 0, 0, 0, -2, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, -1, 1

P7(z) −1 + z + z2 − z5 − z7 − z8 + z10 + z11 + 2z12 − 2z16 − z17 − z18 + z20 + z21+

+z23 − z26 − z27 + z28

TABLE 1. Polynomials Pn(z) and their coefficients for n = 1, 2, 3, 4, 5, 6, 7.

Letting z = cos 2t+ i sin 2t, by the well-known de Moivre formula, we obtain

c
(n)
j +

∑
k 6=j

c
(n)
k zk−j = (−1)n (cos 2jt− i sin 2jt)

n∏
s=1

(
2 sin2 st− 2i sin st cos st

)
= 2nin(cos 2jt− i sin 2jt)

n∏
s=1

(cos st+ i sin st)

n∏
s=1

sin st

= 2n
[
cos

(
n(n+ 1)− 4j

2
t+

nπ

2

)
+ i sin

(
n(n+ 1)− 4j

2
t+

nπ

2

)] n∏
s=1

sin st.

Integrating on the interval [0, π] we get

c
(n)
j =

2n

π

∫ π

0

cos

(
n(n+ 1)− 4j

2
t+

nπ

2

)
sin t sin 2t · · · sinnt dt

=


(−1)

n
2 2n

π

∫ π
0

cos
(
n(n+1)−4j

2 t
)

sin t sin 2t · · · sinnt dt if n is even

(−1)
n+1
2 2n

π

∫ π
0

sin
(
n(n+1)−4j

2 t
)

sin t sin 2t · · · sinnt dt if n is odd.
(2.10)

In addition, from the proof of the integral formula (2.10) it follows that∫ π

0

sin

(
n(n+ 1)− 4j

2
t+

nπ

2

)
sin t sin 2t · · · sinnt dt = 0.

2.3. The combinatorial interpretation of the coefficients c(n)j . The calculation of these
polynomial coefficients involves tuples with fixed sum. Let s, k, n be positive integers.
We denote by α(s, k, n) the number of integer s-tuples (i1, . . . , is) with the properties

i1 + i2 + · · ·+ is = k, 1 ≤ i1 < i2 < · · · < is ≤ n.(2.11)

The link with the coefficients c(n)j is given in the following theorem.
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Theorem 2.1. The following formula holds :

c
(n)
k = (−1)n−1 (α(1, k, n)− α(2, k, n) + α(3, k, n)− · · · ) .(2.12)

Proof. The coefficient c(n)k of zk in the expansion (z − 1)(z2 − 1) · · · (zn − 1) involves s
distinct terms chosen from the set {1, . . . , n} with the property that their sum is k, and
also n− s terms equal to (−1), for s = 0, . . . , n. Explicitly, c(n)k is given by the expression

c
(n)
k = (−1)n−1α(1, k, n) + (−1)n−2α(2, k, n) + (−1)n−3α(3, k, n) + · · · .

This ends the proof. �

Clearly, α(s, k, n) is an increasing function with n. When n is large enough, the function
is stationary to a value not depending on n, simply denoted by α(s, k).

The following result shows a link between the polynomial Ps(z) and integers α(s, k).

Theorem 2.2. If s is a positive integer, then for all z ∈ C such that |z| < 1 we have

(−1)sz
s(s+1)

2

Ps(z)
= lim
n→∞

∑
1≤i1<i2<···<is≤n

zi1+i2+···+is =

∞∑
k=0

α(s, k)zk.(2.13)

Proof. Clearly, we have

lim
n→∞

∑
1≤i1<···<is≤n

zi1+···+is =
∑

1≤i1<···<is

zi1+···+is =
∑

1≤i1<···<is−1

zi1+···+is−1 · z
is−1+1

1− z

=
z

1− z
∑

1≤i1<···<is−1

zi1+···+2is−1 =
z

1− z
∑

1≤i1<···<is−2

zi1+···+is−2 · z
2(is−2+1)

1− z2

=
z1+2

(1− z)(1− z2)

∑
1≤i1<···<is−2

zi1+···+3is−2 = · · · = z1+···+(s−1)

(1− z) · · · (1− zs−1)

∑
1≤i1

zsi1

=
z

s(s+1)
2

(1− z) · · · (1− zs)
=

(−1)sz
s(s+1)

2

Ps(z)
.

�

Notice also that by (2.13) it follows that

(−1)sz
s(s+1)

2 = Ps(z)

( ∞∑
k=0

α(s, k)zk

)
=

 s(s+1)
2∑
j=0

c
(s)
j zj

( ∞∑
k=0

α(s, k)zk

)
,

hence we obtain the following result.

Corollary 2.1. Considering that c(s)j = 0 for j > s(s+1)
2 , we have

n∑
j=0

α(s, n− j)c(s)j = (−1)sδ
n,

s(s+1)
2

,(2.14)

where δu,v denotes the Kronecker symbol.

Corollary 2.2. Let β(s, k) be the number of distinct solutions to the equation

j1 + 2j2 + · · ·+ sjs = k,(2.15)

such that the numbers j1, j2, . . . , js ≥ 1 are not necessarily distinct. We have α(s, k) = β(s, k).
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Proof. Indeed, for j ∈ {1, . . . , s} and |z| < 1 one has zj

1−zj = zj + z2j + · · · .
By taking the product over j ∈ {1, . . . , s}, one obtains

(−1)sz
s(s+1)

2

Ps(z)
= (z + z2 + · · · )(z2 + z4 + · · · ) · · · (zs + z2s + · · · ) =

∞∑
k=0

β(s, k)zk.

The result follows by (2.13). Clearly, α(s, k) = β(s, k) = 0 for 0 ≤ k ≤ s(s+1)
2 − 1. �

Recent results concerning the number of ordered partitions of the integer k into s parts
each of size at least 0 but no larger than n have been obtained in [13] and [16].

2.4. The connection to the Mahonian polynomial Qn(z). The polygonal polynomial can
also be written as Pn(z) = (z − 1)nQn(z), where

Qn(z) = (z + 1)(z2 + z + 1) · · · (zn−1 + zn−2 + · · ·+ z + 1) =

(n−1)n
2∑
j=0

a
(n)
j zj .(2.16)

We call Qn(z) as the Mahonian polynomial, which presents interest in its own right and
has been investigated in many papers [11] (related to coin-tossing), or Margolius [10]. The
coefficients a(n)k are called Mahonian numbers, representing the number of permutations
of the set {1, . . . , n} with k inversions, indexed as A008302 in OEIS. If zk = zk1 · · · zkn−1

with zkj coming from the factor 1 + z + · · · + zj in (2.16), then a direct interpretation of
the coefficient a(n)k is the number of partitions of the integer k = k1 + · · · + kn−1 , with
the constraints 0 ≤ kj ≤ j, 1 ≤ j ≤ n − 1. These numbers are related to the Mahonian
distribution, which interestingly, are used in the mixing of diffusing particles [5].

a
(2)
j 1, 1

Q2(z) 1 + z

a
(3)
j 1, 2, 2, 1

Q3(z) 1 + 2z + 2z2 + z3

a
(4)
j 1, 3, 5, 6, 5, 3, 1

Q4(z) 1 + 3z + 5z2 + 6z3 + 5z4 + 3z5 + z6

a
(5)
j 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1

Q5(z) 1 + 4z + 9z2 + 15z3 + 20z4 + 22z5 + 20z6 + 15z8 + 9z8 + 4z9 + z10

a
(6)
j 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1

Q6(z) 1 + 5z + 14z2 + 29z3 + 49z4 + 71z5 + 90z6 + 101z7 + 101z8 + 90z9 + 71z10 + 49z11+
29z12 + 14z13 + 5z14 + z15

TABLE 2. Polynomials Qn(z) and their coefficients for n = 2, 3, 4, 5, 6.

For n = 10 the following formula is obtained for polynomial Q10(z):

Q10(z) = 1 + 9z + 44z2 + 155z3 + 440z4 + 1068z5 + 2298z6 + 4489z7 + 8095z8 + 13640z9

+ 21670z10 + 32683z11 + 47043z12 + 64889z13 + 86054z14 + 110010z15 + 135853z16

+ 162337z17 + 187959z18 + 211089z19 + 230131z20 + 243694z21 + 250749z22 + 250749z23

+ 243694z24 + 230131z25 + 211089z26 + 187959z27 + 162337z28 + 135853z29

+ 110010z30 + 86054z31 + 64889z32 + 47043z33 + 32683z34 + 21670z35 + 13640z36

+ 8095z37 + 4489z38 + 2298z39 + 1068z40 + 440z41 + 155z42 + 44z43 + 9z44 + z45.

https://oeis.org/A008302
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We also give a recurrence formula for a(n)j , as a function of the coefficients of Qj(z).

Theorem 2.3. Let n ≥ k + 1. The coefficient a(n)k is given by the recursive formula

a
(n)
k =

k∑
j=0

(
n− 1− j
k − j

)
a
(k)
j .(2.17)

Proof. Notice that a(n)k is the coefficient of zk in Qk(z)(1 + z + · · ·+ zk)n−k. Clearly:

(1 + z + · · ·+ zk)n−k =

(
1− zk+1

1− z

)n−k
=
(
1− zk+1

)n−k ( 1

1− z

)n−k
.

For |z| < 1, the geometric series summation yields

1

1− z
= 1 + z + z2 + · · ·+ zs + · · · .

By differentiating (n− k − 1) times one obtains

(n− k − 1)!

(
1

1− z

)n−k
=

∞∑
s=0

(s+ 1)(s+ 2) · · · (s+ n− k − 1)zs,

hence(
1

1− z

)n−k
=

∞∑
s=0

(s+ 1)(s+ 2) · · · (s+ n− k − 1)

(n− k − 1)!
zs =

∞∑
s=0

(
s+ n− 1− k

s

)
zs.

The coefficient of zk in  k(k−1)
2∑
j=0

a
(k)
j

(1− zk+1
)n−k ( 1

1− z

)n−k
,

is then given by

a
(n)
k =

k∑
s=0

a
(k)
k−s

(
s+ n− k − 1

s

)
=

k∑
j=0

a
(k)
j

(
n− j − 1

k − j

)
.

�

Example. First, one may show that a(n)0 = 1 and a(n)1 = n−1. By Theorem 2.3 one obtains:
• k = 2: For n ≥ 3 we have

a
(n)
2 =

(
n− 1

2

)
a
(2)
0 +

(
n− 2

1

)
a
(2)
1 +

(
n− 3

0

)
a
(2)
2 =

(n− 2)(n+ 1)

2
;

• k = 3: For n ≥ 4 we have

a
(n)
3 =

(
n− 1

3

)
a
(3)
0 +

(
n− 2

2

)
a
(3)
1 +

(
n− 3

1

)
a
(3)
2 +

(
n− 4

0

)
a
(3)
3 = a

(n)
3 =

n(n2 − 7)

6
;

• k = 4: For n ≥ 5 we have

a
(n)
4 =

(
n− 1

4

)
a
(4)
0 +

(
n− 2

3

)
a
(4)
1 +

(
n− 3

2

)
a
(4)
2 +

(
n− 4

1

)
a
(4)
3 +

(
n− 5

0

)
a
(4)
4

=
n(n+ 1)(n2 + n− 14)

24
;



On some results concerning the polygonal polynomials 7

• k = 5: For n ≥ 6 we have

a
(n)
5 =

(
n− 1

5

)
a
(5)
0 +

(
n− 2

4

)
a
(5)
1 +

(
n− 3

3

)
a
(5)
2 +

(
n− 4

2

)
a
(5)
3 +

(
n− 5

1

)
a
(5)
4 +

+

(
n− 6

0

)
a
(5)
5 =

1

120
(n− 1)(n+ 6)(n3 − 9n− 20);

• k = 6: For n ≥ 7 we have

a
(n)
6 =

1

720
n
(
n5 + 9n4 − 5n3 − 165n2 − 356n+ 516

)
.

For n = 10 we have a(10)5 = 1068 and a(10)6 = 2298, confirming the values ofQ10(z).
The coefficients of the polynomial Qn can also be obtained recursively. One may write

Qn(z) = Qn−1(z)
(
zn−1 + · · ·+ z + 1

)
.(2.18)

Using the coefficients of Qn(z) and Qn−1(z), one obtains

Qn(z) =

(n−1)n
2∑
j=0

a
(n)
j zj =

 (n−2)(n−1)
2∑
j=0

a
(n−1)
j zj

(zn−1 + · · ·+ z + 1
)
.(2.19)

Proposition 2.1. The following formula holds:

a
(n)
j =

 a
(n−1)
j + · · ·+ a

(n−1)
0 if j ∈ {0, . . . , n− 1} ,

a
(n−1)
j + · · ·+ a

(n−1)
j−(n−1) if j ∈

{
n, . . . , n(n−1)2

}
.

(2.20)

One can prove that Qn(z) is a Λ-polynomial, i.e., it is both palindromic and unimodal
with nonnegative coefficients. This follows from a general result by Andrews [1], and the
fact thatQn(z) is a product of the Λ-polynomials z+1, z2 +z+1,..., zn−1 + · · ·+z+1. This
property can be seen in Table 1. We also present a direct proof of the unimodality Qn(z).

Proposition 2.2. The polynomial Qn(z) is unimodal.

Proof. Let us denote for convenience m =
⌊
n(n−1)

4

⌋
and M =

⌊
n(n+1)

4

⌋
. We shall prove

the result by induction. Assume that the polynomial Qn(z) is unimodal. Observe that

(a) if m = n(n−1)
4 , then the sequence {a(n)j }

n(n−1)/2
j=0 has a single maximum value at

j = m, and also a(n)m−j = a
(n)
m+j , j = 0, . . . ,m, by the unimodality of Qn(z);

(b) if m 6= n(n−1)
4 , then sequence {a(n)j }

n(n−1)/2
j=0 has maximum values at j = m,m + 1,

and also a(n)m−j = a
(n)
m+1+j , j = 0, . . . ,m, by the unimodality of Qn(z).

Clearly, Q2(z) = 1 + z is unimodal. We show that the sequence a(n+1)
j , j = 0, . . . ,M , is

increasing. First, by formula (2.20), if 0 ≤ j ≤ n − 1, then a
(n+1)
j+1 − a(n+1)

j = a
(n)
j+1 ≥ 1.

Then, if n ≤ j ≤ m− 1, one has a(n+1)
j+1 − a(n+1)

j = a
(n)
j+1 − a

(n)
j−n > 0, as Qn(z) is unimodal.

Finally, we prove that the inequality a(n+1)
j+1 − a(n+1)

j > 0 holds whenever m ≤ j ≤M − 1.
Denote for convenience p = j −m, for p ∈ {0, . . . ,M −m− 1}.

Case 1. If n = 4k, then M −m = 2k. For p ∈ {0, . . . , 2k − 1} (even n), one obtains

a
(n)
j+1 − a

(n)
j−n = a

(n)
m+p+1 − a

(n)
m−(n−p) > 0,
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since p+ 1 < n− p. Also, one may notice that for p = 2k, one obtains

a
(n)
j+1 − a

(n)
j−n = a

(n)
m+2k+1 − a

(n)
m−2k = a

(n)
m+2k+1 − a

(n)
m+2k = a

(n)
M+1 − a

(n)
M < 0,

hence sequence a(n+1)
j , j = 0, . . . ,M is increasing, and has the single mode j = M .

Case 2. If n = 4k + 1, then M −m = 2k. For p ∈ {0, . . . , 2k − 1} (odd n) we have

a
(n)
j+1 − a

(n)
j−n = a

(n)
(m+1)+p − a

(n)
m−(n−p) > 0,

since p < n− p. Also, for p = 2k one obtains

a
(n)
j+1 − a

(n)
j−n = a

(n)
(m+1)+2k − a

(n)
m−2k = a

(n)
M+1 − a

(n)
M = 0,

hence sequence a(n+1)
j , j = 0, . . . ,M is increasing, and has modes j = M,M + 1.

Case 3. If n = 4k + 2, then M −m = 2k + 1. For p ∈ {0, . . . , 2k} (even n), one has

a
(n)
j+1 − a

(n)
j−n = a

(n)
m+p+1 − a

(n)
m−(n−p) > 0,

since p+ 1 < n− p. Also, one may notice that for p = 2k + 1, one obtains

a
(n)
j+1 − a

(n)
j−n = a

(n)
m+2k+2 − a

(n)
m−(2k+1) = a

(n)
m+2k+2 − a

(n)
m+2k+1 = a

(n)
M+1 − a

(n)
M < 0,

hence sequence a(n+1)
j , j = 0, . . . ,M is increasing, and has the single mode j = M .

Case 4. If n = 4k + 3, then M −m = 2k + 2. For p ∈ {0, . . . , 2k + 1} (odd n) we have

a
(n)
j+1 − a

(n)
j−n = a

(n)
(m+1)+p − a

(n)
m−(n−p) > 0,

since p < n− p. Also, for p = 2k + 2 one obtains

a
(n)
j+1 − a

(n)
j−n = a

(n)
(m+1)+2k+2 − a

(n)
m−2k−2 = a

(n)
M+1 − a

(n)
M = 0,

hence sequence a(n+1)
j , j = 0, . . . ,M is increasing, and has modes j = M,M + 1. �

Using the definition of the polynomial Qn(z), we obtain another interpretation of the
coefficients of polynomial Pn(z), in terms of Kandall-Mann numbers. Indeed, from

Pn(z) =

[
zn
(
n

0

)
−
(
n

1

)
zn−1 +

(
n

2

)
zn−2 − · · ·+ (−1)n

(
n

n

)] (n−1)n
2∑
j=0

a
(n)
j zj

 ,

one obtains a link between the coefficients of polynomial Pn(z) and those of Qn(z).

Theorem 2.4. The following formula holds

c
(n)
j =


(−1)n

(
a
(n)
j

(
n
0

)
− a(n)j−1

(
n
1

)
+ · · ·+ (−1)ja

(n)
0

(
n
j

))
if j ∈ {0, . . . , n− 1} ,

(−1)n
(
a
(n)
j

(
n
0

)
− a(n)j−1

(
n
1

)
+ · · ·+ (−1)na

(n)
j−n
(
n
n

))
if j ∈

{
n, . . . , n(n−1)2

}
.

Example. Applying the formula in Theorem 2.4 for j = 1, . . . , 6 and n ≥ j + 1 we obtain
c
(n)
0 = (−1)n,
c
(n)
1 = (−1)n(a

(n)
1 − a(n)0

(
n
1

)
) = (−1)n ((n− 1)− n) = (−1)n+1,

c
(n)
2 = (−1)n(a

(n)
2 − a(n)1

(
n
1

)
+ a

(n)
0

(
n
2

)
) = (−1)n+1,

c
(n)
3 = (−1)n(a

(n)
3 − a(n)2

(
n
1

)
+ a

(n)
1

(
n
2

)
+ a

(n)
0

(
n
3

)
) = 0,

c
(n)
4 = (−1)n(a

(n)
4 − a(n)3

(
n
1

)
+ a

(n)
2

(
n
2

)
− a(n)1

(
n
3

)
+ a

(n)
0

(
n
4

)
) = 0,

c
(n)
5 = (−1)n(a

(n)
5 − a(n)4

(
n
1

)
+ a

(n)
3

(
n
2

)
− a(n)2

(
n
3

)
+ a

(n)
1

(
n
4

)
− a(n)0

(
n
5

)
) = (−1)n,

c
(n)
6 = (−1)n(a

(n)
6 − a(n)5

(
n
1

)
+ a

(n)
4

(
n
2

)
− a(n)3

(
n
3

)
+ a

(n)
2

(
n
4

)
− a(n)1

(
n
5

)
+ a

(n)
0

(
n
6

)
) = 0.
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3. ASSOCIATED INTEGER SEQUENCES

3.1. The number of distinct roots. The number of distinct roots of Pn(z) is given by

A(n) = ϕ(1) + ϕ(2) + · · ·+ ϕ(n).(3.21)

Indeed, by (1.1) one has Pn+1(z) = Pn(z)(zn+1 − 1). The new roots added by zn+1 − 1
to the set of roots of Pn(z), are those given by the primitive roots of order n + 1, whose
number is ϕ(n+ 1). The result follows by induction.

The sequence A(n) is indexed as A002088 in the OEIS, starting with the values:

1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, . . .

The asymptotic formula for A(n) is given in [4, Theorem 3.7, page 72]:

A(n) ∼ 3n2

π2
+O(n log n).

Proposition 3.3. Let 1 ≤ k ≤ n be an integer. If zp,k = e2πi
p
k is a kth primitive root, then the

multiplicity of root zp,k in the polynomial Pn(z) is
⌊
n
k

⌋
. Consequently, one recovers the identity

n∑
k=1

ϕ(k)
⌊n
k

⌋
=
n(n+ 1)

2
.

Proof. The root zp,k appears for the first time in polynomial Pk from the factor zk−1. Each
of the ϕ(k) roots appears as a non-primitive root of every multiple of k smaller than n. �

3.2. The middle coefficients of Pn(z) and Qn(z). Formula (2.10) provides an insight into
the sequence of middle terms. Denote by m =

⌊
n(n+1)

4

⌋
.

• If n = 4k, then for m = n(n+1)
4 we have cos

(
n(n+1)−4m

2 t
)

= 1 and

c(n)m =
2n

π

∫ π

0

sin t sin 2t · · · sinnt dt.(3.22)

This sequence recovers A269298 in OEIS, having the starting values

2, 2, 4, 6, 8, 16, 28, 50, 100, 196, 388, 786, 1600, 3280, 6780, 14060, 29280, 61232, . . .

• If n = 4k + 1, then n(n+ 1)− 4m = 2 and sin
(
n(n+1)−4m

2 t
)

= sin t, hence

c(n)m = −2n

π

∫ π

0

sin2 t sin 2t · · · sinnt dt = −c(n)m+1.(3.23)

The sequence of terms multiplied by (−1) is not currently indexed in OEIS:

1, 1, 1, 1, 2, 2, 3, 4, 6, 10, 17, 28, 52, 94, 176, 339, 651, 1268, 2505, 4965, 9916, 19926, . . .

• If n = 4k + 2, then n(n+ 1)− 4m = 2 and cos
(
n(n+1)−4m

2 t
)

= cos t, hence

c(n)m = −2n

π

∫ π

0

cos t sin t sin 2t · · · sinnt dt = c
(n)
m+1.(3.24)

The sequence of terms multiplied by (−1) is not currently indexed in OEIS:

1, 1, 2, 3, 5, 10, 19, 34, 68, 135, 269, 544, 1111, 2274, 4694, 9729, 20237, 42260, 88538, . . .

• If n = 4k + 3 then for m = n(n+1)
4 we have sin

(
n(n+1)−4m

2 t
)

= 0 and c(n)m = 0.

https://oeis.org/A002088
https://oeis.org/A269298
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Conjecture 1. Let n be an integer and m =
⌊
n(n+1)

4

⌋
. Then the middle coefficient c(n)m is

• positive for n = 4k (mentioned in A231599, without a proof);
• negative for n = 4k + 1 and n = 4k + 2.

The sequence of middle coefficients ofQn(z) gives the Kendall-Mann numbers indexed
as A000140 in OEIS, representing the number of permutations of the set {1, . . . , n} having
the maximum number of inversions. The first terms are:

1, 1, 2, 6, 22, 101, 573, 3836, 29228, 250749, 2409581, 25598186, 296643390, 3727542188, . . .

The asymptotic behavior of this sequence was conjectured in A000140.
Conjecture 2. Let n be an integer and m =

⌊
n(n−1)

4

⌋
. Then the sequence of middle coefficients

a
(n)
m of Qn(z) satisfies the asymptotic formula

a(n)m ∼ 6nn−1

en
.

We are not aware of the existence of any proof at the moment.
For the cyclotomic polynomial Φn(z), the sequence of middle coefficients was studied

by Dresden [6], and corresponds to the sequence A094754 in OEIS.

3.3. First occurrence of n as a coefficient of a polygonal polynomial. It was proved by
Suzuki [15], that every integer n is a coefficient for some cyclotomic polynomial Φm(z).
We formulate the following open question regarding polygonal polynomials.

Conjecture 3. Every integer n appears as a coefficient of some polygonal polynomial.

Notice that 1 is a coefficient of P1(z), while 2 first appears as a coefficient in P4(z). For
an integer n ≥ 0, the sequence a(n) defined by the smallest number m for which n is a
coefficient of Pm(z) produces sequence A301701, recently added by the authors to OEIS.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . .
a(n) 3 1 4 10 12 17 16 19 20 22 22 23 24 25 25 25 24 26 26 28 . . .

The conjecture was recently checked for the first 105 integers.

3.4. Number of non-zero terms of Pn(z). The sequence of non-zero coefficients of Pn(z)
is indexed as A086781 in OEIS and starts with the terms

1, 2, 4, 6, 7, 12, 14, 18, 25, 32, 36, 42, 53, 68, 64, 84, 97, 108, 126, 146, 161, 170 . . .

Recently, we have added the sequences below to the OEIS.
• A301703, representing the number of positive coefficients of Pn(z):

1, 2, 3, 3, 6, 6, 9, 13, 16, 18, 21, 27, 34, 32, 42, 47, 54, 62, 73, 79, 85, 96, 104, 113, 123, 140, 150, . . .

• A301704, representing the number of negative coefficients of Pn(z):

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 21, 26, 34, 32, 42, 50, 54, 64, 73, 82, 85, 96, 104, 116, 123, 134, 150, . . .

• A301705, representing the number of zero coefficients of Pn(z):

0, 0, 1, 4, 4, 8, 11, 12, 14, 20, 25, 26, 24, 42, 37, 40, 46, 46, 45, 50, 62, 62, 69, 72, 80, 78, 79, 74, . . .
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