On some results concerning generalized arithmetic triangles

Armen G. Bagdasaryan
Department of Mathematics
American University of the Middle East
Eqaila, Kuwait
in affiliation with Purdue University
West Lafayette, IN 47907, USA

Ovidiu Bagdasar
Department of Electronics, Computing and Mathematics
University of Derby
Kedleston Road, Derby, DE22 1GB, United Kingdom

Abstract
In this paper we present theoretical and computational results regarding generalized arithmetic \(m\)-triangles. The numerical values recover well-known number sequences, indexed in the OEIS including binomial coefficients and their extensions. Some combinatorial interpretations, generating functions and also asymptotic formulae for these triangles are provided.

Keywords: recurrent sequences, pentanomial numbers, generalized binomial coefficients, asymptotic formulae.
1 Introduction

Let m and n be positive integers. The element of the m-arithmetic triangle located at the intersection of the ith row and jth column denoted by $p_{ij}^{(m)}$ is defined by the recurrence

$$p_{ij}^{(m)} = p_{i-1j}^{(m)} + p_{i-1j-1}^{(m)} + \cdots + p_{i-1j-m+1}^{(m)},$$

with the initial conditions

$$p_{0j}^{(m)} = \begin{cases}
0 & \text{if } j < 0, \\
1 & \text{if } j = 0, \\
0 & \text{if } j > 0.
\end{cases}$$

The element in each cell is the sum of m elements: the element directly above the given element and the $m - 1$ elements to the left of it. Hence, the matrix

$$P^{(m)}(n) = \left(p_{ij}^{(m)} \right), \quad 0 \leq i, j \leq n - 1$$

of the elements of the m-arithmetic triangle is defined as follows

$$p_{ij}^{(m)} = \begin{cases}
0 & \text{if } i = 0, \ 1 \leq j \leq n - 1, \\
1 & \text{if } j = 0, \ 0 \leq i \leq n - 1 \\
\sum_{l=j-m+1}^{j} p_{i-l}^{(m)} & \text{if } 1 \leq i, j \leq n - 1.
\end{cases}$$

For $m = 2$ one obtains the elements in Pascal’s triangle. Numerous OEIS sequences are obtained from particular columns of the m-triangle.

For example, for $p_{n3}^{(3)}$ one obtains the sequence indexed as A005581

$$0, 0, 2, 7, 16, 30, 40, 77, 112, 156, 210, \ldots,$$

in the Online Encyclopedia of Integer Sequences (OEIS) [7].

The sequence $p_{n4}^{(3)}$ whose terms are given by

$$0, 0, 1, 6, 19, 45, 90, 161, 266, 414, 615, \ldots$$

corresponds to sequence A005712.
2 Numerical computation of the m-triangles

For a fixed value of $m \geq 2$ and $n \geq 1$ one can compute the rows of the m-triangle by matrix iterations. Denoting by $p_i^{(m)}$ the ith row of the m-triangle, the following formula holds

$$p_{i+1}^{(m)} = p_i^{(m)} M_{m,n},$$

where the matrix $M_{m,n}$ has size $[n(m - 1) + 1] \times [n(m - 1) + 1]$ and has m diagonals whose entries are all equal to 1, as shown below

$$M_{m,n} = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 0 & 0 \\
& \vdots & & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\end{pmatrix}$$

(1)

One obtains recursively the following identities

$$p_i^{(m)} = p_{i-1}^{(m)} M_{m,n} = p_{i-2}^{(m)} M_{m,n}^2 = \cdots = p_0^{(m)} M_{m,n}^i.$$

Numerous integer sequences are obtained as particular cases:

- $m = 2$: binomial coefficients A007318;
- $m = 3$: trinomial coefficients A027907; The first four rows give the values:

 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, \ldots

- $m = 4$: quadrinomial coefficients A008287; First three rows give the values:

 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, \ldots

- $m = 5$: pentanomial coefficients A035343.

The sequence of maximum values over each row gives the sequences A001405 ($m = 2$), A002426 ($m = 3$), A035343 ($m = 4$) and A005191 ($m = 5$).

Other related results can be found in [2], [3] and [4].
\section{3 Some Explicit Formulae}

Let $p_{ij}^{(m)}$ be the element located at the intersection of the ith row and jth column of the m-arithmetic triangle. The generating function of these numbers is given by

\[(1 + x + x^2 + \ldots + x^{m-1})^i = \sum_{j=0}^{(m-1)i} p_{ij}^{(m)} x^j, \ m \in \mathbb{N}, \ i \in \mathbb{N} \cup \{0\}.\]

The element $p_{ij}^{(m)}$ is the coefficient of x^j in the formal expansion of

\[(1 + x + x^2 + \ldots + x^{m-1})^i.\]

We can formulate the following results.

\textbf{Theorem 3.1} Let $l = \min\{i, j\}$. Then for $m \in \mathbb{N}$ and $i \in \mathbb{N} \cup \{0\}$

\[p_{ij}^{(m)} = \sum_{s_0 + s_1 + \ldots + s_{m-1} = i \atop s_1 + 2s_2 + \ldots + (m-1)s_{m-1} = j} \frac{l!}{s_0!s_1!\ldots s_{m-1}!}, \ j = 0, 1, \ldots, (m-1)i.\]

\textbf{Theorem 3.2} Let $l = \min\{i, j\}$. Then for $m = 3$ we have

\[p_{ij}^{(3)} = \sum_{k=j-l}^{[j/2]} \frac{i!}{k!(j-2k)!(i+j-k)!}, \ j = 0, \ldots, 2i.\]

\textbf{Example 3.3} As an example, we consider the case when $m = 3$, $i = 4$, $j = 2$. Then, according to Theorem 3.2, $l = 2$, $j - l = 0$, and $[j/2] = 1$, and we get

\[p_{42}^{(3)} = \sum_{k=0}^{1} \frac{4!}{k!(2-2k)!(2+k)!} = \frac{4!}{0!2!2!} + \frac{4!}{1!0!3!} = 10\]

which is exactly the number positioned in the 4th row and 2nd column of the 3-arithmetic triangle (see the Table 1).

\textbf{Example 3.4} Consider the 4-arithmetic triangle and put $m = 4$, $i = 2$, and $j = 3$. Then $l = 2$, and by formula for $p_{ij}^{(m)}$ in Theorem 3.1, we have

\[p_{23}^{(4)} = \sum_{s_0+s_3+s_4+s_3=2 \atop s_1+2s_2+3s_3=3 \atop s_3=0,1,2} \frac{2!}{s_0!s_1!s_2!s_3!}.\]
From the conditions

$$s_1 + 2s_2 + 3s_3 = 3 \quad \text{and} \quad s_1 + s_2 + s_3 \leq 2,$$

we find two sets of solutions

$$\{s_1 = 0, s_2 = 0, s_3 = 1\} \quad \text{and} \quad \{s_1 = 1, s_2 = 1, s_3 = 0\}.$$

Then the value of $s_0 = 1$ for the first set and $s_0 = 0$ for the second set.

Hence, we obtain $p_{23}^{(4)} = \frac{2!}{1!0!0!0!} + \frac{2!}{0!1!1!0!} = 2+2 = 4$, which is the number positioned at the intersection of the 2th row and 3nd column of the 4-arithmetic triangle (see the Table 2).

<table>
<thead>
<tr>
<th>$R \setminus C$</th>
<th>−3</th>
<th>−2</th>
<th>−1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>31</td>
<td>40</td>
<td>44</td>
<td>40</td>
<td>31</td>
<td>20</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2
4-Arithmetic Triangle
4 Future work

Future investigations will be dedicated to the identification of new integer sequences related to m-sequences and to establishing of asymptotic expansions for the numbers $p_{ij}^{(m)}$ when $i, j \rightarrow \infty$ and $m \in \mathbb{N}$, $m \geq 2$ fixed.

The key results in the proof are based on theory given in [5] and [6].

Proposition 4.1 Let ξ be a random variable with the probability distribution

$$ P\{\xi = k\} = \frac{1}{m}, \quad k = 0, 1, \ldots, m - 1. $$

Then the cumulants c_n of a random variable ξ are defined by the formula

$$ c_1 = E[\xi] = \frac{m - 1}{2}, \quad c_{2\nu} = \frac{B_{2\nu}}{2\nu} (m^{2\nu} - 1), \quad c_{2\nu + 1} = 0, $$

where $B_{2\nu}$ are the Bernoulli numbers, $\nu = 1, 2, \ldots$.

Proposition 4.2 Let ξ_1, \ldots, ξ_i be independent random variables with the probability distribution of ξ. Then we have

$$ p_{ij}^{(m)} = m^i P\{\xi_1 + \ldots + \xi_i = j\}, \quad j = 0, 1, \ldots, (m - 1)i $$

The formula for c_n above can be derived using the expression [5]

$$ \ln E[e^{\zeta}] = \frac{m - 1}{2}z + \sum_{n=2}^{\infty} \frac{c_n}{n!}z^n, \quad |z| < \frac{2\pi}{m}. $$

Theorem 4.3 Let $i \rightarrow \infty$, $m \geq 2$, $m \in \mathbb{N}$ and let $j \rightarrow \infty$, $j \in \mathbb{N}$, such that

$$ j = \frac{1}{2} \left((m - 1)i + x \sqrt{\frac{i(m^2 - 1)}{3}}\right), \quad |x| \leq c, \quad c = \text{const}. $$

Then, uniformly with respect to $x \in [-c, c]$, we have

$$ p_{ij}^{(m)} = m^i \sqrt{\frac{6}{\pi i(m^2 - 1)}} e^{-\frac{x^2}{2}} \left(1 + \sum_{\nu=1}^{r} \frac{Q_{2\nu}(x)}{i^{\nu}} + O\left(i^{-r-1}\right)\right), \quad r = 1, 2, \ldots $$

where $Q_{2\nu}(x)$ are polynomials in x, $\nu = 1, 2, \ldots$, given by

$$ Q_{\nu}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \sum_{k_1+k_2+\ldots+k_{\nu}=0 \atop k_1+k_2+\ldots+k_{\nu}=s} \prod_{t=1}^{\nu} \frac{1}{k_t!} \frac{\sigma_{t+2}}{(t+2)\sigma_{t+2}}^{k_t}. $$
References

