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ABSTRACT
This paper reviews current research in Cloud utilisation within
games and finds that there is little beyond Cloud gaming and Cloud
MMOs. To this end, a proof-of-concept Cloud-based Path-finding
framework is introduced. This was developed to determine the prac-
ticality of relocating the computation for navigation problems from
consumer-grade clients to powerful business-grade servers, with
the aim of improving performance. The results gathered suggest
that the solution might be impractical. However, because of the
poor quality of the data, the results are largely inconclusive. Thus
recommendations and questions for future research are posed.
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1 INTRODUCTION
The Cloud continues to be a focal point for research, yet there is
limited literature available on the subject of Cloud utilisation within
games; existing research typically targets Cloud gaming and Cloud
MMOs. To this end, a proof-of-concept Cloud-based path-finding
framework is proposed. This is a simple architecture, designed to
compute the navigation routes for computer-controlled agents in
the Cloud.

A further motivation for its development is the need to increase
available resources to push the boundaries of game AI development,
which is currently far from being able to outperform human experts
[3], often as a result of a lack of memory. In addition, it is evident
that real-time strategy (RTS) games are one of the more challenging
genres to develop intelligent navigation for. This is a direct result of

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC’17 Companion, December 5–8, 2017, Austin, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5195-9/17/12. . . $15.00
https://doi.org/10.1145/3147234.3148097

the tight constraints imposed, which include real-time and simulta-
neous moves, partial observability, nondeterministic play, and vast
state space sizes.

The goal of this research is thus to evaluate the computational
benefit of moving path-finding calculations from consumer-grade
clients to powerful business-grade servers and to determinewhether
there is a potential application for Cloud based path finding within
real-time games, i.e. can the Cloud perform at an acceptable level
when the network bandwidth is assumed to be the largest variable
affecting performance? Note that henceforth this paper refers to
the server-computed path search as Cloud Path-finding, and any
paths computed on the client as Local Path-finding.

1.1 RTS AI Research
There is a multitude of research on RTS AI covering the following
topics as categorised by [3, 12]: adversarial planning [9, 11, 15],
opponent modeling [17], decision making under uncertainty [12],
spatial and temporal reasoning [3, 5, 12], resource management
[4, 10, 13], collaboration [3, 12] and path-finding [1, 2, 7, 14]. Despite
the diverse range of topics, none attempt to solve their problems us-
ing the Cloud, which provides additional rationale for the research
conducted.

2 RELATEDWORK
The only existing literature that proposes a concept similar to Cloud
AI is [18]. This paper introduced the notion of a fast and scalable
Cloud service to provide automated planning (AP) solutions. The
rationale was to develop a system so that smartphones and other
low-powered devices could utilise AP, with an Internet connection
as the only requirement. The RESTful web service allows clients
to connect to a Proxy & Scheduler, which distributes the avail-
able resources without exposing them to the technical details. The
service is implemented using Planning Domain Description Lan-
guage (PDDL) and ‘Fast Downward’ to accommodate the needs of
researchers and engineers, and makes full use of Cloud facilities so
that the Proxy & Scheduler can launch and destroy virtual hosts on
demand. In comparison, the proposed Cloud AI differs in a few, but
significant, ways:

• Connections are per request instead of per session;
• Data is transferred using Protocol Buffers - a faster and more
lightweight format compared to the commonly used JSON
[19];

• Only A* Search is specifically implemented, as opposed to
the generic solution in [18], but this allows the data-intensive
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algorithm to test the limits of the connection bandwidth -
the expected largest factor in overall performance;

• Initial proof-of-concept does not utilise the Cloud; testing is
carried out using a single server.

3 IMPLEMENTATION

Figure 1: Cloud Path-finding concept flow chart

The Cloud Path-finding architecture is made up of four dis-
tinct parts; the server application, which responds to computer-
controlled agents’ requests, the client API, which is used to send
requests to the server application, a simple test game that utilises
the client API, and a database for storing analytics. Figure 1 shows
the flow diagram for the architecture.

3.1 Server
The server application used to compute traversable paths is hosted
on a free-tier Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) t2.micro virtual machine running Ubuntu Server 16.04 LTS
with a single vCPU and 1GB RAM. It was chosen for its low cost and
availability during the search for a suitable service. The application
is developed from the ground up using C++14 for its speed and
to ensure only the necessary components are implemented. To
help handle networking logic the C++ Boost library is incorporated,
making heavy use of Asio’s TCP networking logic in particular - the
protocol used between client and server; no additional networking
logic is implemented. The data format of choice for communication
between client and server is Google’s Protocol Buffer [6]. This was
chosen instead of, for example, JSON, because of its smaller data
size, faster read/write speeds and generated source files, which are
easier to use programmatically [6].

The logic for handling requests follows a simple four-step pro-
cess:

(1) The client sends a request header, of exactly 7 bytes, con-
taining the type of computation and the size of the request
body, in bytes. For the research conducted the only available
request header was for A* Search.

(2) The client then sends the request body containing all the
data necessary to compute the requested calculation.

(3) Upon completing the calculation, the server sends a response
header, of exactly 7 bytes, containing the type of computation
and the size of the response body, in bytes.

(4) The server then sends the response body, which contains
the results of the requested path calculation.

The request headers and bodies are serialised Protocol Buffers
and are sent using the aforementioned TCP. For simplicity, for each
new request received, a new thread is spawned to handle it and
therefore the Cloud Path-finding is not currently designed as a
scalable framework.

3.2 Artifical Intelligence
The popular A* search algorithm is sufficient for the purposes of
this proof of concept; better search algorithms exist, but A* is simple
to implement. Moreover, the overall performance is not the main
concern of this paper, rather, it is the performance of the Cloud Path-
finding against the Local Path-finding that is of interest. Therefore,
implementing an easy search algorithm such as A* Search simplifies
the design and development of the system.

To ensure high performance, the A* Search implemented on the
server is highly modified to use as little data as possible. Each node
in the grid has a unique ID, a heuristic, and a map containing pairs
of IDs of neighbouring nodes and the cost to travel there. This is
the minimal quantity of data necessary to perform A* Search in the
Cloud.

3.3 Client API
The client has two main functions. The first is to act as the interface
between the game and the server when sending A* Search requests.
Cloud Path-finding requests made through the API are asynchro-
nous. As part of the request, a callback must be provided, which
is sent once the request has been completed. The second function
of the API is to perform A* Search locally; this is a blocking call
and only returns control once the calculation is complete. In both
instances, data related to the calculation is gathered and stored
in an AWS relational database for later analysis. The client was
developed in C# and compiled as a DLL for use in other programs.

3.4 Test Game
A clone test game based on Spelunky and the SpelunkBots API
[16] was created. Its path-finding computation was purposefully
designed with the Cloud AI in mind and so it was expected to
work seamlessly, as opposed to using an existing project which
might have been incompatible or required significant modification
to work effectively with the client API. An additional benefit of
using a purpose-built clone is that it only includes the necessities,
i.e. generating levels and basic AI to navigate them. The Spelunky
clone was implemented using the MonoGame framework (http:
//www.monogame.net), which targets the .NET Framework 4.5
standard.

The level generation is computed in a similar manner to the
original work, however, no enemies or objects are created. Reference
[8] provides a detailed explanation of how Spelunky procedurally
generates its levels. In contract, the following describes how levels
are spawned for the Spelunky clone. Each level is comprised of
several rows and columns of rooms, and to produce a variety of
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data, the number of rows and columns ranges from 4 to 10 rooms.
Each room contains 8 rows by 10 columns of tiles, true to the
original work. A selection of room templates with varying numbers
of exits are hardcoded, each with a specific type associated with it:

• LeftRight - rooms with exits to the left and right;
• LeftRightTop - rooms with exits to the left, right and top;
• LeftRightBottom - rooms with exits to the left, right and
bottom;

• All - rooms with exits in all directions.
The algorithm for generating levels works as follows:
(1) The number of rows and columns of rooms is randomly

generated;
(2) A column in the top row is chosen at random to be the start

location. This room is then given a room template of type
LeftRight;

(3) A direction from the current room is randomly chosen from
left, right, and down:
• Left - if it is possible to move to the room to the left (it has
not yet been set and is not out-of-bounds), move to the
left and choose a room from the templates that contains
an exit to the right;

• Right - if it is possible to move to the room to the right,
move to the right and choose a room from the templates
that contains an exit to the left.

• Below - there are two possibilities for rooms below. If
the room below can be reached, move down and choose
a room from the templates that contains an exit above;
else, if the room below is out-of-bounds, the exit has been
found.

(4) Repeat step 3 until the exit has been found;
(5) For the remaining unset rooms, randomly choose a room of

any type.
Upon completing the level generation, five basic computer con-

trolled agents are spawned into the level, and their only function is
to choose a start and destination node randomly. This information
is then used by the algorithm to calculate the path. Once the results
are received, and if there is an acceptable path, they travel from
the start to the destination, and then repeat the process. Every 20
seconds the entire level is destroyed and a new one is generated for
the agents to navigate. Figure 2 shows the appearence of a typical
level. There are three main elements to be seen:

• Dark grey tiles - these are the ground tiles;
• Light grey tiles - these are the waypoint tiles (used in the A*
Search) that dictate where a computer-controlled agent can
move to;

• Black tiles - these are the AI; there are five in the game that
randomly navigate around.

The rationale for creating a clone of Spelunky was that the level
generation provided a simple and scalable solution for generating
levels of varying sizes and layouts. Extending the number of rows
or columns, or designing more room templates was trivial once the
base algorithm was in place. When the game executes, it continues
to generate varying levels without any further work required, sim-
plifying the process of data collection. Note that the levels are often
larger than can be seen on screen, but the visualisation of the game

is only for evaluation purposes to ensure that paths are correctly
computed.

Figure 2: A randomly generated Spelunky-style level

3.5 Analytics
The data gathered by the client API needed storing for future anal-
ysis. It was not stored locally in a text file, as this could prove time
consuming to merge and graph appropriately. As an existing service
could not be found, an AWS relational database was set up as the
central repository of data to store the following:

• Success - Whether a path was found or not;
• Sent Data - How much data the client transferred to the
server. This refers to the request body size;

• Received Data - How much data the server sent back to the
client. This refers to the response body size;

• Calculation Time - How long it took to calculate a path in the
A* Search. For the server, this also includes the time taken
to deserialise the protocol buffer containing the calculation
data, but not the time to serialise the results;

• Total Time - How long the entire process of sending and
receiving a request took. For the Local Path-finding, this is
the same as the Calculation Time;

• Used Server - This indicates whether the Cloud Path-finding
or Local Path-finding was used;

• Room Count - The number of rooms in the generated level.
AMicrosoft Excel spreadsheet, which connects to the SQL Server

database to pull down data, was used to help visual the results. In
addition, IBM’s Watson was used to generate the graphs found in
Section 4.

3.6 Testing
The test game was run for 30 minutes to determine the performance
of the Cloud Path-finding AI. This produced 90 randomly generated
levels and 1,708 A* Search requests. For a comparison, the test game
was run for another 30 minutes, this time utilising the Local Path-
finding. This produced 90 randomly generated levels and 1,659
A* Search requests. The specification of the Local Path-finding
(which also runs the test game), as well as a reminder of the Cloud
configuration, can be seen in Table 1.
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Table 1: Local and Cloud Hardware Specifications

Local Path-finding Cloud Path-finding
Windows 10 Pro Ubuntu Server 16.04 LTS

i7-4770K @ 3.5GHz 1 vCPU Intel Xeon @ 3.3GHz
16GB RAM 1GB RAM

200MiB/s NW Low to Moderate NW Performance

A significant oversight with the testing process is acknowledged;
the two systems possess different hardware, thus a direct compari-
son of the gathered data may seem illogical because of the impact
of the hardware differences on the overall performance. It can be
reasoned, however, that the data gathered is perfectly valid, and as
such, a general comparison is still justifiable - the Local Path-finding
is equivalent to a typical mid-to-high end ‘gaming’ PC; if the Cloud
Path-finding cannot match or surpass its performance, then it can
be surmised that Cloud Path-finding is not a practical solution,
unless the server hardware is superior to the local hardware.

Another problem is that the only reasonable variables that can
be used to compare the two path-finding implementations are the
room count of the generated levels and the total calculation time.
These can be analysed, but the results may be somewhat vague
because room count is not a clear and comprehensible metric; a
generated level with 10 rooms could have a different number of
waypoints compared to another generated level with 10 rooms,
because the room templates used are invariably different. A more
suitable metric is the waypoint count, because this is an accurate
and unambiguous value.

4 RESULTS
4.1 Cloud Path-finding Performance
Figure 3 shows the average total time to send, compute, and receive
the results for a request, and the average calculation time taken
plotted against the sent data size (in bytes) in the Cloud. The x-axis
values are grouped together in steps of 15,646 bytes for clarity. Note
that the calculation time in the Cloud includes the time taken to
deserialise and compute A* Search.

It is clear to see that the Cloud Path-finding quickly exceeds the
16 milliseconds frame time required for 60 FPS. Granted, this does
not affect the game performance itself, but it does affect the respon-
siveness of the computer-controlled agents; as the game generated
larger rooms, the computation in the Cloud rapidly approached a 1
second total time, which is far too slow for the high responsiveness
demanded in real-time games. From 0 - 15,646 to 62,587 - 78,233,
the total average time increased by 1350%, whereas the sent data
size only increased by about 500%.

Table 2 provides a side-by-side comparison of the average total
time against the average calculation time. The table shows that it is
the calculation time that is responsible for the poor Cloud AI perfor-
mance, and not the time taken to send or receive data. Serialisation
and deserialisation are known to be a slow process, however, the
calculation time includes both deserialising the data and computing
A* Search. Thus, an improvement to the experimental set-up would
be to time each operation individually so that empirical evidence
can exactly determine the main offender.
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Figure 3: Cloud Path-finding average total time and calcula-
tion time against sent data size

Table 2: Cloud Path-finding performance comparison

Sent Data Size Avg Calculation Time Avg Total Time
0 - 15,646 0.02 0.07

15,647 - 31,293 0.05 0.11
31,294 - 46,939 0.22 0.37
46,940 - 62,586 0.43 0.54
62,587 - 78,233 0.81 0.95

4.2 Cloud vs Local
Figure 4 shows the previous Cloud Path-finding average total time
and average calculation time, this time plotted against the room
count. Figure 5 shows the Local Path-finding average total time
(which is synonymous with the average calculation time) also plot-
ted against room count. As expected, for both the Local and Cloud
computation, there is an increase in the average total time as the
size of the rooms rises; more rooms generally means more way-
points, thus more time is required to compute A* Search, and more
data needs to be sent and received by the Cloud server. It is inter-
esting to note that the slowest Local search time (100 rooms; 8,000
tiles, 0.028 seconds), is significantly faster than the fastest Cloud
Path-finding time (16 rooms; 1,280 tiles, 0.08 seconds).

5 CONCLUSION & FUTUREWORK
Real-time strategy games provide a complex and challenging envi-
ronment for real-time navigation research. This paper focused on
performance, which is an area of RTS path finding that has been
overlooked as merely a by-product of current research. The aim of
the work was to determine the practicality of a proof-of-concept
Cloud based AI framework with the goal of improving real-time
path finding performance by relocating A* Search computations to
a server. The results obtained suggest that such a solution is not
currently practical, but the evidence is weak considering the local
and server hardware differences and the ambiguity of the room
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Figure 4: Cloud Path-finding average total time and calcula-
tion time against room count
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Figure 5: Local Path-finding average total time

count metric. More could be concluded from a set of results if these
issues were addressed (see Section 5.1).

5.1 Future Research Recommendations
This paper acknowledges a weakness in the experimental design
process which led to inconclusive results. Thus, the most prominent
recommendation is to use waypoint count (the number of nodes
used in the A* Search calculation, i.e. the number of tiles sent to the
server), instead of the ambiguous room count. This would enable a
more direct comparison between both systems to be achieved.

For a direct performance comparison both systems should ideally
be run on the same hardware. In hindsight, it was unnecessary to
design and develop the client API and test game for the Windows
platform. Two AWS EC2 virtual machines could have been set up,
one running the Cloud based computation as before, and the other
making use of a combination of Local and Cloud computation, as
was the case for the Windows platform. More reliable conclusions

could be drawn using this set up, and by incorporating the previous
recommendation.

Two trivial improvements remain. First, the test game should
be redesigned to use the exact same generated levels and paths for
both systems, instead of leaving it to chance with random number
generation. Second, an analysis of the granularity between data
transfer to the Cloud and the computation time of A* search would
enable a more precise quantification of the true cause of Cloud
based computation performance.

A final improvement for future research is to explore the scal-
ability of the framework; it was hypothesised that the current
thread-per-connection approach would scale poorly. Examining
this empirically and devising a scalable Cloud based computation
solution would thus be worthwhile. The scalability of the computa-
tion should concern both the size of the map as well as the number
of computer-controlled agents.
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